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Abstract

Existing volatility models normally emphasize the behavior of prices in a temporal sense and comparatively

few studies have explicitly analyzed the spatial variation of volatility. This paper proposes a flexible spatial

volatility model for squared returns using a Box-Cox transformation that includes the linear and log-linear

forms as special cases, thus providing a unified framework for simultaneously testing space-varying volatility

and its functional form. The maximum likelihood method is used to estimate the model and Monte Carlo

simulations are conducted to investigate the finite sample performance of the maximum likelihood estimator.

The use of the model is also illustrated by a substantive application to housing price data in the city of Chicago.

The estimation results suggest that housing returns in Chicago show the volatility exhibits strong spatial

dependence and the log-linear functional form is appropriate. In the final log-linear model, a new practical

indicator, called neighborhood elasticity, is proposed that determines how volatility in one neighborhood is

linked to that in surrounding neighborhoods. From a practical point of view, this indicator provides a tool

to help policy-makers mitigate volatility transmission and the risk of contagion in the housing market.
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1 Introduction

The volatility of housing prices has important implications for household behavior and welfare as well as for

the aggregate U.S. economy. At the household level, it can be easily argued that housing is the most important

asset for many households. It is usually both the largest asset they own and the most readily available source

of collateral against which they can borrow.1 Higher housing price volatility thus has the potential to pose

substantial risk to household welfare. For example, it could distort a household’s housing choices, lead to a higher

likelihood of mortgage foreclosure, and also affect home building and intergenerational equity (Miller and Peng,

2006; Oxley and Haffner, 2010; Stephens, 2011). From a macroeconomic perspective, the impact of housing

price volatility is similarly damaging as the housing sector is vital to the national economy. Recent experience has

made painfully clear the importance of the housing market in the U.S. A catastrophic and systematic collapse of

the U.S. housing market triggered an economic recession, the so-called Great Recession, that rippled throughout

the global economy.

The level of housing price volatility is more important today than ever, as more U.S. households are headed

by renters (and therefore housing investors) than at any point since at least 1965. According to a Pew Research

Center analysis of Census Bureau housing data in 2017, the number of households renting their homes increased

significantly, from 31.2% in 2006 to 36.6% in 2016, near the high of 37% in 1965.2 The analysis also states

that, in 2016, 65% of the nation’s households headed by people under age 35 are rental households. This

indicates that higher housing price volatility levels may discourage newly formed households from committing

to homeownership as they view housing as a risky investment vehicle, although previously housing was perceived

as a stable investment and a reliable inflation hedge (Stevenson, 1999; Anari and Kolari, 2002).

Research into housing price volatility has received increased attention in the housing literature in recent years.

Much of this research has focused primarily on investigating whether housing price volatility is time-varying, i.e.,

housing prices exhibit volatility clustering or autoregressive conditional heteroskedasticity (ARCH) effects

(e.g. Dolde and Tirtiroglu, 1997; Crawford and Fratantoni, 2003; Miller and Peng, 2006; Miles, 2008; Barros

et al., 2015). While it is widely recognized that conditional heteroskedasticity is pervasive in studies of housing

price volatility, there has been little research addressing such heteroskedasticity in the context of spatial volatility.

Unlike previous housing-market cycles, the most recent cycle has been the longest in history, spanning well

over a decade. During this period, market fundamentals, such as income, employment, population and net

1According to the Federal Reserve’s 2016 Survey of Consumer Finances (SCF), at $24.2 trillion, the primary residence accounted
for about one quarter of all assets held by households in 2016. The survey also reveals that the value of the primary mortgage debt

was the largest liability faced by the homeowners. https://www.federalreserve.gov/econres/scfindex.htm
2Cilluffo et al. (2017).
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immigration, have grown at different rates throughout the country and thus have increasingly been exposed to

regional differentials. Therefore, housing price volatility has come to differentially affect parts of the U.S. in a

way that it did not before. In order to see the spatial variation of volatility in the local housing market in the U.S.,

consider the annual return on housing in 2017 at the census tract level in Chicago. Construction of the return

data is described in Section 5. Looking at the representative spatial plot for the returns and squared returns as a

volatility proxy in Figure 1, it is evident that, while returns appear to be randomly distributed over space, squared

returns are spatially correlated, with distinct clusters of high and low volatility readily identifiable, e.g., high

volatility clusters are detected in Chicago’s west-side neighborhoods (Austin (23); West Garfield Park (26) and

East Garfield Park (27); North Lawndale (29) and South Lawndale (30)) and south side neighborhoods (South

Chicago (46); West Englewood (67) and Englewood (68); Greater Grand Crossing (69); Auburn Gresham (71)).3

(a) Returns (b) Squared returns

FIGURE 1 Spatial distribution of (a) returns and (b) squared returns, 2017

Note: The above figure shows the spatial distribution of returns and squared returns by census tract in the city of Chicago for 2017.

The listed numbers refer to the codes for Chicago community areas (see Table 13 in the Appendix for details).

Shifting the 2D view to the 3D map view given in Figure 2, it can be easily seen that clusters of high volatility

are more pronounced in the southern part of the Chicago. This clustering pattern may occur in any housing

market, as the nature of change in the U.S. housing market has opened significant gaps between regions in recent

3This pattern is also detected when using an alternative measure of volatility, absolute returns, suggesting that the dependence behavior

is not sensitive to the choice of a particular measure of volatility. Robust analysis using this alternative is addressed in Section 6.
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decades.

Motivated by the visual implications of Figure 1 and Figure 2, this paper develops a spatial ARCH-type

model of squared returns to examine housing price volatility in the context of a spatial regression framework.4

Specifically, the proposed model incorporates space-varying volatility (or spatial volatility clustering), which

is the spatial equivalent of time-varying volatility in a time-series context.

When analyzing economic data that take only positive values, the use of transformations is very common

and may be helpful when the usual assumptions are not satisfied in one’s original model. In the finance literature,

the logarithmic transformation of realized volatility (the sum of squared intraday returns) is often used in

empirical applications owing to its superior finite sample properties. Barndorff-Nielsen and Shephard (2005)

demonstrate that the finite sample distribution of the log transformation of realized volatility is closer to the

asymptotic standard normal distribution than to the raw version of realized volatility. Most empirical studies

have also focused on the log transformation in volatility estimation and forecasting (Andersen et al., 2001; Corsi,

2009; Hansen et al., 2012; Koopman and Scharth, 2012).

Recently, however, amore flexible power transformation suggested byBox andCox (1964) has been considered

in this context (Gonçalves and Meddahi, 2011; Nugroho and Morimoto, 2016; Weigand, 2014; Zheng and

Song, 2014; Taylor, 2017). The Box-Cox transformation indexed by the transformation parameter defines a

general class of functional forms that includes the linear and log-linear forms as special cases. This feature allows

the data added flexibility in model specification and provides a unified structure for statistically distinguishing

between alternative functional specifications.

Although the Box-Cox transformation has long been applied in finance, including to return-based volatility

models, there has been almost no attempt to introduce the transformation in the spatial context. Studies conducted

by Baltagi and Li (2004) and Li and Le (2010) are the most similar to the present paper, in that both explicitly

consider functional form and spatial dependence simultaneously by applying the Box-Cox transformations in the

context of the spatial regression model. In the former study, Baltagi and Li (2004) derive Lagrangian multiplier

(LM) tests. In the latter study, the framework builds on double-length regression (DLR). Both of these studies

indicate that choosing the correct functional form is beneficial in the presence of spatial dependence.

In light of the foregoing, this paper generalizes the spatial ARCH model to a more general version with the

Box-Cox transformation to derive the most appropriate functional form of spatial volatility, where the linear

and log-linear models are special cases (hereafter referred to as the BC-SARCH model). The advantages of

the BC-SARCH model are that both functional form and spatial dependence can be considered simultaneously,

4As indicated by Bollerslev et al. (1992), squared returns of not only exchange rate data but of all speculative price series typically

exhibit volatility clustering and ARCH-type models are appropriate for volatility estimations.
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(a) Returns

(b) Squared returns

FIGURE 2 Spatial distribution of returns and squared returns, 2017
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and that the validity of linear or log-linear specifications can be addressed. The proposed model would also be

useful in another respect, in that the transformation might affect the distributional shape of the variable favorably.

It is well known that the unconditional distribution of data for which typical linear models are used is frequently

skewed and leptokurtic. Given that appropriate transformation may induce symmetry to the distribution, it

seems probable that the proposed model would yield, apart from capturing the presence of spatial dependence,

approximate symmetric and mesokurtic properties (i.e., normality) for the unconditional distribution.

To estimate the BC-SARCH model, a maximum likelihood estimation (MLE) procedure is applied to both

simulated and empirical data. The finite sample properties of the estimator is examined in a Monte Carlo

experiment and the result suggests that the MLEs perform well in estimating parameters of interest. This study

also carries out a detailed empirical analysis using housing sales price data within the city of Chicago in a period

running from 2009 through 2018. It uses squared returns of observed housing sales prices that serve as a proxy

for latent volatility and ensures that the study period covers the latest dynamics in the Chicago housing market.

In this empirical application of the BC-SARCH model, the results suggest that volatility exhibits substantial

spatial dependence and its functional form is close to the log-linear model. Judging by the associated model

diagnostics and specification tests, the log-linear model is found to be superior to the linear model. Furthermore,

the resulting spatial dependence parameter in the log-linear model serves as neighborhood elasticity, which

measures how volatility in one neighborhood is linked to that in surrounding neighborhoods. For 2009 through

2018, the average value of the cross-sectional neighborhood elasticity is observed to be around 0.4, indicating

that a 1% increase in volatility determines an increase of 0.4% in the volatility of neighboring locations. This

analysis is further extended to the spatial panel data models to test temporal heterogeneity in neighborhood

elasticity, i.e., whether neighborhood elasticity stays the same over time. Applying the method introduced by Xu

and Yang (2019), this paper shows that, after controlling for both spatial and temporal heterogeneity in intercepts,

neighborhood elasticity is homogeneous and there exists no structural change.

This paper contributes to the existing literature methodologically and empirically. The methodological

contribution consists of a unified structure for statistically testing both spatial dependence and functional form

simultaneously. Another methodological contribution involves the use of adjusted quasi score (AQS) tests for

testing the existence of temporal heterogeneity in spatial parameters in spatial panel data models, a method

that was recently developed by Xu and Yang (2019) that has not been used previously in the literature. The

empirical contribution relates to the use of the most recent multiple listing service (MLS) price data, allowing

extension of spatial volatility analysis at a finer spatial scale (the census-tract scale). As noted above, while

the spatial dependence of housing price volatility has been detected at large spatial scales (the state or MSA

scale), a rigorous empirical examination of the linkage at a much smaller spatial scale has not been carried out
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because of the lack of publicly available data.5 Finally, a new practical indicator, neighborhood elasticity, is

proposed that can serve as a tool for policy-makers to assist them to mitigate volatility transmission and the

risk of contagion in the housing market.

The rest of this paper is organized as follows. In Section 2, I review the related literature on spatial volatility

models. In Section 3, I discuss the detailed description of the BC-SARCH model under consideration. The

Monte Carlo simulation experiment is conducted in Section 4 to evaluate the finite sample performance of the

MLEs for the proposed model. In Section 5, I describe the data used in this paper and associated estimation

results. In Section 6, I verify the robustness of the findings in alternative modeling choices. Section 7 concludes

with a discussion of the contributions of this paper, and implications for public policy.

2 Related Literature

An increasing amount of studies have attempted to model the housing price volatility of individual housing

markets by employing the class of generalized autoregressive conditional heteroskedasticity (GARCH) models.

Earlier studies have employed different univariate GARCH-type models, such as GARCH and GARCH-in-Mean

(GARCH-M) (e.g. Dolde and Tirtiroglu, 1997; Stevenson et al., 2007; Hossain and Latif, 2009), exponential

GARCH (EGARCH) and exponential GARCH-in-Mean (EGARCH-M) (e.g. Lee, 2009; Willcocks, 2010; Lin

and Fuerst, 2014), component GARCH (CGARCH) and component GARCH-in-Mean (CGARCH-M) (e.g.

Miles, 2011; Lee and Reed, 2013; Karoglou et al., 2013).

Nevertheless, there remains a lack of statistical models accounting for the spatial conditional heteroskedasticity

in a spatial econometric context, despite the growing body of evidence that neighborhood plays an important

role in volatility dynamics as mentioned in the introduction. Subsequent to the pioneering work of Bera and

Simlai (2005), who propose a special type of spatial ARCH (SARCH) model by employing the information

matrix (IM) test statistic in a simple SAR model, several ARCH or GARCH-type models have been proposed to

incorporate both temporal and spatial effects in the dynamics of volatility. For example, Borovkova and Lopuhaa

(2012) and Caporin and Paruolo (2006) introduce a temporal GARCH model, which includes temporal lags

influenced by neighboring observations, while Otto et al. (2018) introduce an exponential SARCH model and

illustrate the use of model as a residual process for the spatial modeling of lung cancer mortality in U.S. counties.

Very recently, Sato and Matsuda (2020) suggest a further extension of SARCH models with applications to

land prices in the Tokyo area of Japan. On the other hand, several recent papers have discussed moment methods

of spatial econometric models with heteroskedasticity (e.g. Breitung and Wigger, 2018; Taşpınar et al., 2019).

5Although Bera and Simlai (2005) use data from 506 census tracts in the Boston metropolitan area, the data are taken from the 1970

census, which does not reflect recent housing cycles.
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Interestingly, in spite of this promising start, the use of a spatial econometric approach to detect the presence

of conditional spatial volatility has remained largely unexplored in the literature. Furthermore, it is not yet

established which functional form is the most appropriate for evaluating space-varying volatility in the housing

market.

3 The Model and Econometric Methodology

The most widely used model for describing nonlinear dependencies of returns in a time-series context is the

ARCH class of models, where past squared returns are used to predict subsequent squared returns. This approach

potentially suggests that, in a spatial context, squared returns can be described by the squares of neighboring

observations. The simplest specification for approximating this expectation relates the squared returns in one

location to the weighted average of the neighboring squared observations. To specify the functional relationship,

the following BC-SARCH model is proposed, which is expressed as

(
y2

i

)λ − 1
λ

= α0 + α1

n∑
j 6=i

wij

(
y2

j

)λ − 1
λ

+ εi, (1)

where y2
i are squared returns at location i, y2

j are the values of the variable at surrounding locations j (j 6= i),

wij are the spatial weights, which are non-zero when i and j are neighbors and zero otherwise, and εi ∼

IIDN(0, σ2), i = 1, 2, ..., n. It is important to note that no exogenous variables are introduced in this model as

typical hedonic pricing variables (e.g., structural or neighborhood attributes of housing) were found insignificant

mostly in the previous analysis. Equation (1) can be also expressed using the matrix form by letting y2 =(
y2

1, y2
2, ..., y2

n

)′
be the data on which the Box-Cox transformation is applied.

y2(λ) = α1Wy2(λ) + α01 + ε, (2)

where y2(λ)
is the Box-Cox transformation of y2, W is a row-normalized spatial weight matrix such that∑n

j 6=i wij = 1 for all i, with zeros on the main diagonal, the off-diagonal elements take values between 0 and

1, and 1 is an n-dimensional vector of ones.

The Box-Cox model in equation (1) clearly reduces to the linear model when λ = 1, and to the log-linear

8



model when λ → 0, such that

f(y2
i ) =


y2

i = α0 + α1

n∑
j 6=i

wijy2
j + εi when λ = 1 (3)

log y2
i = α0 + α1

n∑
j 6=i

wij log y2
j + εi when λ → 0, (4)

and thus tests of λ aid in selecting the proper functional form. The log-linear form in equation (4) is prevalent

in demand studies and the coefficients can be interpreted as elasticities of demand. For example, let log Q =

α0 + α1 log P + ε denote the traditional demand function with respect to price; the coefficient α1 = ∂ log Q
∂ log P

is then a price elasticity of demand which represents the percentage change in demand with respect to a 1%

change in price. Similarly, the parameter estimate of α1 in equation (4) amounts to an elasticity, but one that

is conditional on neighborhood information N. To see this, let the conditional expectation of equation (4) be

given by E[log y2
i |N] = α1Zi where Zi =

n∑
j 6=i

wij log y2
j , the neighborhood average. This in turn leads to

∂E[log y2
i |N]

∂Zi
= α1, (5)

which measures the sensitivity of the expected volatility at location i to an increase in volatility of the neigh-

borhood, and it will be convenient to call it the neighborhood elasticity.

A heuristic justification of the BC-SARCH model presented in equation (1) can be provided as follows. It

begins with the idea of the constant elasticity of substitution (CES) production function introduced by Solow

(1956) and later expanded on by Arrow et al. (1961). Consider the following CES-type volatility production

function consisting of two inputs, autonomous variance σ2 and neighborhood-induced variance y2
j , j 6= i

(combined as
∑n

j 6=i wij(y2
j )λ), conditional on all neighborhood N with E(yi|N) = 0. Then,

V (yi|N) = E(y2
i |N) =

[
α0(σ2)λ + α1

n∑
j 6=i

wij(y2
j )λ

] 1
λ

, (6)

where α0 and α1 are the share parameters with α0 + α1 = 1, and λ is the substitution parameter that can be used

to derive the elasticity of substitution η = 1
1−λ . This function indicates that, for α1 = 0, aggregate variance

will be determined only by an exogenously given level of autonomous variance σ2, both conditionally and

unconditionally, as α0 becomes 1 and λ cancels out. The function also nests several well-known functional

forms as special cases, depending on the value of the substitution parameter λ; for λ → 0, η approaches 1 and

the CES turns to the Cobb-Douglas form; for λ → −∞, η approaches 0 and the CES becomes the Leontief or

perfect complements production function; and for λ → 1, η approaches infinity and the CES becomes a linear
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or perfect substitutes production function.

Subtracting 1 from both sides of equation (6) and dividing by the substitution parameter λ yields

E(y2
i |N)λ − 1

λ
= α0(σ2)λ

λ
+

α1
∑n

j 6=i wij(y2
j )λ

λ
− 1

λ

= α0
(σ2)λ − 1

λ
+ α1

n∑
j 6=i

wij

(y2
j )λ − 1

λ
− 1

λ
+ α0

λ
+ α1

λ
since

n∑
j 6=i

wij = 1

= α0
(σ2)λ − 1

λ
+ α1

n∑
j 6=i

wij

(y2
j )λ − 1

λ
since α0 + α1 = 1,

and thus,

E

[(y2
i )λ − 1

λ

∣∣∣∣N]
= α0

(σ2)λ − 1
λ

+ α1

n∑
j 6=i

wij

(y2
j )λ − 1

λ
, (7)

which is essentially the same as the proposed model in equation (1). Therefore, when λ = 1, it becomes the

linear specification with some constant α0(σ2 − 1) = α′
0 and when λ → 0, it is log-linear with some constant

α0 log σ2 = α′
0. Note that equation (6) is not exactly a CES function, but it provides some intuitive support

for the BC-SARCH model.

The process of choosing the appropriate functional form for the BC-SARCH models involves maximizing a

log-likelihood function. The likelihood function, in terms of the original variable, is expressed by

L
(
θ|y2)

= 1√
(2πσ2)n

exp
{

− ε′ε

2σ2

}
J, (8)

where θ is a vector of parameters, ε = (I − α1W )y2(λ) − α01 with 1 denoting the n × n identity matrix, and J

is the Jacobian of the transformation from ε to y2, or

J =
∣∣∣∣∣ dε

dy2(λ)
dy2(λ)

dy2

∣∣∣∣∣ =
∣∣I − α1W

∣∣ n∏
i=1

(
y2

i

)λ−1
. (9)

Consequently, the log-likelihood function is given by

log L
(
θ|y2)

= −n

2 log(2π) − n

2 log(σ2) − ε′ε

2σ2 + log
∣∣I − α1W

∣∣ + (λ − 1)
n∑

i=1
log

(
y2

i

)
. (10)

Note that log
∣∣I − α1W

∣∣ =
∑n

i=1 log(1 − α1ωi), where the ωi’s are the eigenvalues of W ; see Ord (1975)

and Anselin (1988). By assumption, the matrix I − α1W is nonsingular. The last term in equation (10) vanishes

in the case of the linear model.
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Finally, the log-likelihood function is maximized with respect to the parameter vector θ =
{
α0, α1, λ, σ2}

to obtain the maximum likelihood estimators (MLEs). The maximization is performed numerically by using

the first derivatives (gradient) with respect to the parameter θ, which can be obtained from equation (10) as

follows:

∂ log L

∂α0
= 1

σ2 1′ε (11)

∂ log L

∂α1
= 1

σ2
(
Wy2(λ))′

ε −
n∑

i=1

ωi

1 − α1ωi
(12)

∂ log L

∂λ
= − 1

σ2

[
(I − α1W )∂y2(λ)

∂λ

]′
ε +

n∑
i=1

log
(
y2

i

)
(13)

∂ log L

∂σ2 = − n

2σ2 + 1
2σ4 ε′ε, (14)

where ∂y2(λ)

∂λ = λy2λ log y2−y2λ+1
λ2 . The second derivatives (Hessian) of the log-likelihood function are given in

the Appendix where they are used to obtain the standard errors of the model parameters.

It is important to note that the asymptotic distribution of the MLEs are not formally established in the paper

but are likely to hold under similar sets of assumptions developed by Lee (2004), who presents a comprehensive

investigation of the asymptotic properties of the MLEs widely used in the literature to estimate spatial models.

4 Monte Carlo Simulation

4.1 Experimental Design

In this section I present a Monte Carlo experiment to evaluate the empirical evidence pertaining to the spatial

regression using the BC-SARCH specification in a simulated setting. It has been argued in the literature that

a spatial regression with heteroskedastic innovation can lead to significantly biased ML estimators (Kelejian

and Prucha, 2010). A recent study by Piras and Prucha (2014) points out that the finite sample properties are

crucial for understanding bias for estimators of various spatial models. Following the lead provided by the

existing literature, I investigate the finite sample performance of the BC-SARCH estimators of interest.

In all of the experiments, the data-generating process is assumed to be of the form specified in equation (1).

The spatial weight matrix W is generated according to both queen and rook criteria on regular m × m grids,

leading to a sample size of n = m2. While the queen specification states that two polygons are neighbors if

they share a border or a vertex, the rook specification states that two polygons are neighbors if they share a

border. The contiguity matrix is typically used as the spatial weight matrix for data represented by areal units
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(polygons) that vary in size. Both weight matrices are row-normalized so that each row sums to unity. This

study considers all combinations of the true parameters α1 ∈ {0.3, 0.5, 0.8} and λ ∈ {0.1, 0.3, 0.5, 0.8, 1.0},

and the values of α0 and σ2 are set equal to 1.0 and 0.1. Note that the parameter space of α1 is specified such

that I − α1W is nonsingular, which requires that α1 ∈
(
ω−1

min, ω−1
max

)
where ωmin and ωmax, respectively, are

the smallest (i.e. the most negative) and the largest real eigenvalues of W . For each combination of α1 and

λ, this procedure is repeated 1,000 times using samples of size n = 100, 400, and 900. Following Kelejian

and Prucha (1999), the quality of an estimate is evaluated in terms of its bias and the root mean squared error

(RMSE). The measure of bias is defined as the average difference between the estimator and the true value,

while the RMSE is defined as the square root of the sum of the variance and the squared bias of the estimator.

4.2 Simulation Results

The simulation results using the queen contiguity are reported in Table 1, and those using the rook contiguity

matrix are reported in Table 2. In each table, the first two columns are true values of the parameters of interest,

α1 and λ, and the remaining columns present the estimated bias and the RMSE of the two parameters for various

combinations of sample size n and parameter values α1 and λ.

First consider the simulation results based on the queen contiguity matrix reported in Table 1. As a general

observation it seems that, on average, the bias of α1 does not follow any particular pattern with respect to the

parameter set of high or low values of α1 and λ. Nonetheless, for a large true value of α1, α1 = 0.8 here, the

estimator of α1 displays small bias, and the average RMSE is the lowest across all values of λ. Especially for

α1 = 0.8 and λ = 0.1, the estimator of α1 exhibits the lowest RMSE. Comparing the results associated with

each value of λ across all sample sizes, it is found that increasing the sample size improves the quality of the

estimates, i.e. the bias and RMSE become uniformly smaller with larger samples.

Another important parameter of interest is λ, which is the transformation parameter in the BC-SARCH model.

It is shown that the estimator performs reasonably well in estimating λ in terms of bias and RMSE. In general, for

small true values of λ, the estimator tends to produce better estimates with small bias and RMSE. In particular,

the estimator with λ = 0.1 has the smallest RMSE across all values of α1 and sample sizes, while the largest

bias corresponds to a situation where the model is a linear form (λ = 1). The RMSE is shown to decrease as the

sample size increases. The simulation results using the rook contiguity matrix reported in Table 2 are in line

with the findings from the results reported in Table 1, suggesting that the performances of the estimators are

robust to spatial weight matrix specifications.
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TABLE 1 Bias and RMSE for estimators of α1 and λ based on queen contiguity

n = 100 n = 400 n = 900

α1 λ α1 λ α1 λ

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

α1 = 0.1 λ = 0.1 -0.039 0.165 0.074 0.215 -0.013 0.089 0.023 0.114 -0.009 0.061 0.012 0.087

λ = 0.3 -0.049 0.180 0.037 0.284 -0.015 0.093 -0.005 0.164 -0.008 0.061 0.001 0.114

λ = 0.5 -0.055 0.189 -0.009 0.319 -0.011 0.094 -0.004 0.198 -0.006 0.063 -0.004 0.130

λ = 0.8 -0.051 0.183 -0.100 0.335 -0.014 0.096 -0.047 0.217 -0.003 0.060 -0.010 0.146

λ = 1.0 -0.056 0.191 -0.233 0.385 -0.017 0.092 -0.103 0.185 -0.006 0.061 -0.074 0.129

α1 = 0.3 λ = 0.1 -0.049 0.151 0.074 0.215 -0.013 0.080 0.019 0.115 -0.004 0.054 0.006 0.084

λ = 0.3 -0.048 0.174 0.024 0.287 -0.019 0.088 0.010 0.175 -0.008 0.056 0.001 0.117

λ = 0.5 -0.058 0.181 0.014 0.347 -0.013 0.083 0.010 0.207 -0.008 0.055 -0.001 0.142

λ = 0.8 -0.050 0.168 -0.148 0.383 -0.012 0.086 -0.042 0.226 -0.007 0.056 -0.018 0.157

λ = 1.0 -0.050 0.167 -0.246 0.405 -0.018 0.085 -0.129 0.223 -0.005 0.055 -0.089 0.153

α1 = 0.5 λ = 0.1 -0.040 0.126 0.065 0.201 -0.015 0.067 0.025 0.121 -0.009 0.045 0.008 0.084

λ = 0.3 -0.054 0.145 0.034 0.291 -0.017 0.073 0.003 0.181 -0.006 0.044 -0.005 0.126

λ = 0.5 -0.066 0.158 -0.016 0.349 -0.015 0.070 0.010 0.224 -0.010 0.048 0.003 0.156

λ = 0.8 -0.069 0.160 -0.134 0.390 -0.015 0.071 -0.041 0.241 -0.006 0.049 -0.015 0.179

λ = 1.0 -0.065 0.157 -0.273 0.446 -0.015 0.070 -0.136 0.236 -0.005 0.048 -0.093 0.162

α1 = 0.8 λ = 0.1 -0.041 0.084 0.023 0.135 -0.013 0.042 0.011 0.101 -0.006 0.028 0.004 0.076

λ = 0.3 -0.046 0.101 -0.020 0.237 -0.016 0.044 0.003 0.186 -0.007 0.028 -0.005 0.141

λ = 0.5 -0.050 0.101 -0.071 0.345 -0.013 0.044 -0.022 0.260 -0.004 0.027 0.000 0.194

λ = 0.8 -0.051 0.102 -0.211 0.456 -0.013 0.042 -0.089 0.315 -0.007 0.028 -0.053 0.241

λ = 1.0 -0.052 0.108 -0.343 0.534 -0.012 0.044 -0.211 0.360 -0.006 0.028 -0.147 0.257

Note: The spatial weight matrix is derived using queen contiguity. The values of α0 and σ2 are set equal to 1.0 and 0.1. Each set of

simulation results is based on 1,000 Monte Carlo samples.

5 Empirical Analysis

5.1 Data

I base the empirical analysis on residential sales data obtained through the multiple listing service (MLS) used

by Illinois REALTORS®.6 The data include records of all residential property sales in the city of Chicago and

cover the 10-year period running from 2009 through 2018. These properties are comprised of single-family

properties and condominiums. To remove outliers, transactions that take place at extreme prices, below the

first or above the ninety-ninth percentile of the distribution of raw prices, are excluded. The resulting dataset

covers 258,017 transactions.

6The multiple listing service (MLS) is a private real estate listing service where real estate property information is listed and searched

by participating members (e.g. real estate agents).
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TABLE 2 Bias and RMSE for estimators of α1 and λ based on rook contiguity

n = 100 n = 400 n = 900

α1 λ α1 λ α1 λ

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

α1 = 0.1 λ = 0.1 -0.016 0.124 0.071 0.213 -0.006 0.066 0.017 0.114 -0.001 0.045 0.009 0.082

λ = 0.3 -0.023 0.128 0.020 0.275 -0.004 0.067 -0.005 0.163 -0.002 0.045 0.003 0.116

λ = 0.5 -0.021 0.131 -0.005 0.332 -0.004 0.068 0.007 0.198 -0.001 0.048 -0.001 0.131

λ = 0.8 -0.017 0.134 -0.106 0.347 -0.006 0.066 -0.015 0.203 -0.002 0.045 -0.012 0.150

λ = 1.0 -0.028 0.135 -0.220 0.374 -0.005 0.068 -0.105 0.190 -0.002 0.046 -0.085 0.142

α1 = 0.3 λ = 0.1 -0.028 0.118 0.069 0.209 -0.007 0.062 0.017 0.117 -0.003 0.043 0.008 0.080

λ = 0.3 -0.027 0.127 0.028 0.285 -0.007 0.067 0.008 0.171 -0.002 0.043 -0.002 0.118

λ = 0.5 -0.028 0.126 -0.006 0.339 -0.005 0.064 -0.011 0.203 -0.003 0.045 -0.007 0.138

λ = 0.8 -0.027 0.131 -0.099 0.351 -0.009 0.064 -0.032 0.215 -0.004 0.042 -0.018 0.157

λ = 1.0 -0.025 0.121 -0.225 0.391 -0.012 0.064 -0.112 0.205 -0.003 0.042 -0.081 0.145

α1 = 0.5 λ = 0.1 -0.027 0.100 0.055 0.189 -0.008 0.055 0.019 0.109 -0.005 0.038 0.011 0.081

λ = 0.3 -0.035 0.116 0.024 0.281 -0.012 0.058 -0.002 0.167 -0.004 0.038 0.001 0.116

λ = 0.5 -0.032 0.112 -0.015 0.348 -0.009 0.057 -0.006 0.213 -0.003 0.037 -0.001 0.147

λ = 0.8 -0.038 0.115 -0.141 0.391 -0.009 0.057 -0.053 0.234 -0.003 0.037 -0.009 0.162

λ = 1.0 -0.038 0.123 -0.280 0.453 -0.008 0.056 -0.129 0.234 -0.005 0.038 -0.084 0.148

α1 = 0.8 λ = 0.1 -0.029 0.070 0.027 0.135 -0.010 0.035 0.007 0.093 -0.005 0.024 0.004 0.071

λ = 0.3 -0.034 0.084 -0.011 0.238 -0.009 0.034 0.002 0.168 -0.004 0.023 -0.009 0.125

λ = 0.5 -0.032 0.076 -0.055 0.343 -0.009 0.036 -0.001 0.239 -0.004 0.023 -0.011 0.173

λ = 0.8 -0.033 0.077 -0.176 0.429 -0.010 0.036 -0.068 0.283 -0.005 0.023 -0.036 0.217

λ = 1.0 -0.037 0.081 -0.290 0.477 -0.008 0.035 -0.191 0.333 -0.004 0.023 -0.119 0.212

Note: The spatial weight matrix is derived using rook contiguity. The values of α0 and σ2 are set equal to 1.0 and 0.1. Each set of

simulation results is based on 1,000 Monte Carlo samples.

Several factors are considered in selecting appropriate spatial units to enable the study to represent neigh-

borhoods. These include homogeneity in terms of socioeconomic status within the spatial unit; large enough

population size to minimize the problem of small numbers; data availability; acceptability by urban planners

and policy-makers; and the stability of the boundaries over time for future analyses. Based on these criteria,

census tracts are chosen as the spatial units for the analysis, owing mainly to their homogeneity with respect to

socioeconomic and demographic characteristics.7 Furthermore, most census data are reported at this level of

geography and the boundaries of the census tracts follow permanent and easily recognizable physical features.

There are 801 census tracts in Chicago and, for ease of interpretation, 77 community areas are used as

references for the neighborhoods.8 A detailed description of the areas can be found in Table 13 in the Appendix.

7Census tracts are small, relatively stable spatial units with population ranging between 2,500 and 8,000 with an average of approximately

4,000, and are designed to be homogeneous with respect to population characteristics, economic status, and living conditions.
8The community areas are well-defined, stable geographical regions designated by the Social Science Research Committee at the

University of Chicago and officially recognized by the city of Chicago.
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Figure 3 shows a map of Chicago with the 801 census tracts outlined in light blue and the 77 community areas

outlined in solid black. It should be noted, however, that several tracts in which there are no observed transactions

are eliminated from the analysis, leading to reduced and varying sample sizes across years (see Table 3).

FIGURE 3 Chicago community areas with census tracts

Data Source: U.S. Census Bureau, OpenStreetMap.

Note: The listed numbers refer to the codes for Chicago community areas (see Table 13 in the Appendix for details).

All transaction records within the study area are geocoded using ArcGIS 10.6 and aggregated to the census-

tract level to calculate an annual median price for each tract. The rationale for using median home prices in

this study is its long history and extensive coverage of census tracts. It has been frequently argued that the repeat

sales method is a considerable improvement over median sales prices as it controls for price appreciation that

arises from significant positive or negative changes in property quality.9 The repeat sales measure suffers a

serious loss in the number of observations available to estimate the index, however, as it excludes properties

9The repeat sales approach assumes that the quality attributes and their coefficients for each house are constant between two sales dates.

The S&P/Case-Shiller and the Federal Housing Finance Agency (FHFA) indices are based on repeat sales, while the National

Association of Realtors (NAR) report the median prices of all houses that have sold (Bailey et al., 1963; Case and Shiller, 1987).
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for which there is only one price observation, and it is not clear that properties that have sold more than once

are representative of the overall housing market (McMillen, 2012). Clapp et al. (1991) also point out that

the repeat sales measure may suffer from added noise when compared with price indices that are constructed

using all transactions. In spite of all these shortcomings, however, the most widely used home price measures

in government reports are based on the repeat sales method, including the ubiquitous S&P/Case-Shiller and

the Federal Housing Finance Agency (FHFA) price indices. Such data have recently become available at the

census-tract level by the FHFA (Bogin et al., 2019), but as expected they use a very limited number of census

tracts, excluding a large portion of residential sales data.

Nevertheless, upon close inspection of the FHFA repeat sales price index and the calculated median price

index for this study, it is found that the two price series exhibit similar overall patterns across census tracts for all

years, with the average correlation coefficient equaling approximately 0.5 (p < 0.001). This result indicates that

there will not be a large difference between the empirical results derived from the two data series and that the

median price may reflect regional housing prices reasonably well with its robustness to selection and exclusion

criteria. Also, the repeat sales index measures only relative prices within a census tract over time but not across

tracts. Because this study focuses on cross-sectional variation in housing price volatility using the absolute

dollar value of housing, repeat sales data are not well suited for this purpose. Capozza et al. (2004) and Cannon

et al. (2006) also use median price data for their cross-sectional analysis across the U.S. housing market. In

particular, Cannon et al. (2006) use annual data on median ZIP code home prices to study the cross-sectional role

of volatility, price level, stock market risk, and idiosyncratic volatility in housing returns. More sophisticated

measures of the housing price index are possible, e.g. the hedonic price index, but they are beyond the scope

of this research.10

Therefore, this study relies on the median price index and the calculated median prices are used to construct

the key variable of interest in this study, housing returns. The return series is obtained from the first difference of

log annual median house prices, i.e. yi,t = log
(
Pi,t/Pi,t−1

)
, where at census tract (location) i, Pi,t and Pi,t−1

are the median prices at time t and t − 1, respectively.11 It should be noted that following Willcocks (2010),

the returns are not smoothed or adjusted for inflation as adjustment could hide the impact of volatility changes

between adjacent time periods.

To investigate the spatial dependence structure in volatility, the series of squared returns y2
i and log-squared

10The hedonic price index combines data on sales price with property and location characteristics, and controls for factors that might

affect the sales price of a house.
11Hayunga et al. (2019) argue that homeowner characteristics influence their maintenance and home-improvement behaviors, which

in turn affect home values and thus the observed pecuniary return. This analysis requires mortgage information data at initial

purchase, which are not available from the MLS records; the current study thus treats observed housing returns as actual returns

despite the possibility of overstatement.
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returns log y2
i are considered as proxies of the volatility measures, which are the linear and log-linear cases

nested within the BC-SARCH model. The logarithm of squared returns is problematic when the returns are

zero or very small in magnitude. To avoid the problem of taking the logarithm of zero, Fuller (1996) proposes

a slight modification of the squared returns, which is given by

log ỹ2
i = log(y2

i + γs2) − γs2

y2
i + γs2 , (15)

where s2 is the sample variance of returns and γ is a small constant, with γ set equal to 0.02, following Fuller

(1996). This modified version will, for convenience, be hereinafter referred to as the log-squared returns. Table 3

presents summary statistics for the returns and two volatility series, squared returns and log-squared returns,

including the Jarque-Bera test statistics for normality for each year during the study period running from 2009

through 2018.

TABLE 3 Descriptive statistics

Returns Squared returns Log-squared returns

Mean S.D. Skew. Kurt. J-B Mean S.D. Skew. Kurt. J-B Mean S.D. Skew. Kurt. J-B

2009 −0.37 0.51 −1.00 5.96 1258.8∗∗∗ 0.40 0.95 5.24 38.13 49713.9∗∗∗ −2.66 2.06 0.03 −0.91 25.9∗∗∗

2010 −0.06 0.45 −0.56 4.44 673.5∗∗∗ 0.21 0.53 4.83 27.98 28125.3∗∗∗ −3.48 2.03 0.28 −0.83 31.4∗∗∗

2011 −0.09 0.46 0.43 5.23 905.0∗∗∗ 0.22 0.56 5.37 34.85 42695.5∗∗∗ −3.19 1.92 0.10 −0.71 17.2∗∗∗

2012 −0.02 0.38 −0.24 4.01 521.6∗∗∗ 0.14 0.35 7.50 90.41 267722.8∗∗∗ −3.50 1.89 0.06 −0.82 21.6∗∗∗

2013 0.11 0.38 −0.13 3.29 350.8∗∗∗ 0.16 0.35 4.81 32.59 36914.0∗∗∗ −3.38 1.92 −0.03 −0.75 17.9∗∗∗

2014 0.14 0.37 0.05 6.67 1434.5∗∗∗ 0.15 0.41 7.44 81.27 219901.5∗∗∗ −3.58 1.99 0.04 −0.84 22.5∗∗∗

2015 0.11 0.38 0.61 4.53 716.6∗∗∗ 0.16 0.40 5.69 47.62 77926.1∗∗∗ −3.78 2.10 0.24 −0.96 36.7∗∗∗

2016 0.10 0.37 0.03 3.34 360.6∗∗∗ 0.15 0.33 4.78 29.59 31026.9∗∗∗ −3.59 2.00 0.07 −0.97 30.3∗∗∗

2017 0.12 0.35 0.50 3.81 497.9∗∗∗ 0.14 0.32 4.50 24.85 22386.8∗∗∗ −3.79 2.02 0.18 −0.87 28.2∗∗∗

2018 0.10 0.33 0.63 4.10 592.6∗∗∗ 0.12 0.29 6.12 56.31 106695.4∗∗∗ −3.90 2.02 0.17 −0.93 31.1∗∗∗

Note: This table describes several summary statistics, including means (%), standard deviations (S.D., %), skewness (Skew.), kurtosis (Kurt.) and

the J–B (Jarque–Bera) test statistics. Under the null hypothesis for normality, the J-B statistic is distributed as χ2(2). ∗∗∗ p < 0.01; ∗∗ p < 0.05;
∗ p < 0.1

The figures reported in columns 1-5 indicate that the Chicago housing market experienced negative annual

returns over the period during which the market falls (2009-2012) while returns increase when the market

rises (2013-2018). In particular, the lowest annual return is observed in 2009 in the aftermath of the recent

crisis. Furthermore, during the overall period, most of the return series display only small variations from zero

skewness, although they exhibit excess kurtosis. Finally, the Jarque-Bera test indicates that the returns are

not normally distributed for the overall period. The remaining columns present summary statistics for the two

volatility measures: squared returns and log-squared returns. The descriptive statistics for the squared-return
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series clearly indicates a positively skewed and leptokurtic distribution. The Jarque-Bera test further confirms

a serious departure from normality. On the other hand, the logarithmic transform renders the squared returns

approximately normal as the values of the Jarque-Bera test for the log-squared returns are considerably lower

than the corresponding values for the returns and the squared returns.

5.2 Preliminary Tests

To understand whether the three return series reflect spatial dependence, a global Moran’s I test for spatial

patterns is undertaken for cross-sectional data from 2009 through 2018 separately. The Moran’s I is a widely

used test for the presence of spatial dependence, and in this study the queen and rook contiguity weight matrices

are considered to check the robustness of the test results. Table 4 provides the test results in which the results

reported in Panel A are based on the queen contiguity matrix, and those reported in Panel B are based on the

rook contiguity matrix.

The results are in line with expectations presented visually in the introduction and are not sensitive to the

choice of the spatial weight matrix. Both measures of volatility exhibit a high degree of spatial dependence,

while there is no or only weak statistical evidence for spatial dependence in the returns, with the exception for

2009, when the effects of the financial crisis led to significant negative returns for most tracts, which can be

identified in Panel (a) of Figure 4.12

On the whole, the above results appear to be analogous to the well-known stylized fact in the time-series

literature that, in contrast to the lack of serial dependence in returns, the autocorrelation for the squared returns

is always positive and significant. Note that, in the case of log-squared returns, the reported test statistics are

generally larger and p-values are lower (more significant). The presence of spatial dependence in the return

series indicates that the housing market is spatially inefficient, and therefor the housing returns could contain

useful information for predicting the returns in neighboring locations. This result is not surprising because the

unique features of a housing market, such as transaction costs, infrequent transactions, and a high degree of

heterogeneity, may limit arbitrage opportunities, leading to pricing inefficiencies (Case and Shiller, 1988).

5.3 Cross-Sectional Estimation Results

The BC-SARCH model specified in equation (1) is estimated separately for each of the ten years beginning in

2009, and the cross-section results are presented in Table 5, where the parameters are estimated by the maximum

likelihood method. After estimating the coefficients, their corresponding standard errors are obtained from the

12In the finance literature, several papers have documented that an autocorrelation of stock returns exists, particularly during the

post-crisis period (Islam et al., 2007; Sarwar and Khan, 2017).
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TABLE 4 Moran’s I tests

Returns Squared returns Log-squared returns

Moran’s I p-value Moran’s I p-value Moran’s I p-value

Panel A: Queen contiguity

2009 0.247*** 8 × 10−33 0.251*** 2 × 10−35 0.406*** 2 × 10−84

2010 0.078*** 6 × 10−5 0.139*** 3 × 10−12 0.191*** 1 × 10−20

2011 0.062*** 1 × 10−3 0.079*** 4 × 10−5 0.161*** 3 × 10−15

2012 0.058*** 2 × 10−3 0.074*** 6 × 10−5 0.208*** 5 × 10−24

2013 −0.015 0.739 0.080*** 3 × 10−5 0.128*** 2 × 10−10

2014 0.016 0.197 0.069*** 2 × 10−4 0.151*** 8 × 10−14

2015 0.023 0.113 0.193*** 3 × 10−23 0.231*** 4 × 10−30

2016 0.020 0.146 0.247*** 9 × 10−35 0.300*** 2 × 10−48

2017 0.050*** 7 × 10−3 0.228*** 1 × 10−29 0.287*** 2 × 10−44

2018 0.094*** 2 × 10−6 0.183*** 8 × 10−21 0.270*** 1 × 10−39

Panel B: Rook contiguity

2009 0.267*** 7 × 10−28 0.249*** 2 × 10−25 0.425*** 2 × 10−66

2010 0.086*** 2 × 10−4 0.140*** 2 × 10−9 0.188*** 5 × 10−15

2011 0.060*** 6 × 10−3 0.078*** 4 × 10−4 0.168*** 2 × 10−12

2012 0.063*** 4 × 10−3 0.082*** 1 × 10−4 0.211*** 3 × 10−18

2013 −0.022 0.798 0.065*** 3 × 10−3 0.127*** 7 × 10−8

2014 0.014 0.258 0.046** 0.019 0.148*** 4 × 10−10

2015 0.009 0.333 0.201*** 2 × 10−18 0.247*** 3 × 10−25

2016 0.037* 0.056 0.266*** 1 × 10−29 0.294*** 3 × 10−34

2017 0.048** 0.022 0.258*** 1 × 10−27 0.298*** 7 × 10−35

2018 0.087*** 1 × 10−4 0.149*** 7 × 10−11 0.268*** 1 × 10−28

Note: For Panel A, the spatial weight matrix is based on queen contiguity. For Panel B, the spatial weight

matrix is based on rook contiguity. ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1

diagonal elements of the inverted Hessian matrix and used to perform a t-test for the null hypotheses that each

of α0, α1, σ, and λ is equal to zero. The upper panel (Panel A) of Table 5 reports the estimation results using the

queen contiguity matrix, and the results using the rook contiguity matrix are shown in the lower panel (Panel B).

The most noticeable result reported in Table 5 is that, as expected, there is strong and significant spatial

dependence in Box-Cox transformed squared returns in all years, with coefficient values ranging from 0.293

for 2013 to 0.613 for 2009. This result provides strong evidence for the presence of spatial clustering in volatility

discussed earlier in connection with Figure 1 and Table 4. That is, locations with high volatility tend to have

neighbors with high volatility and those with low volatility tend to have neighbors with low volatility. The

comparison of Panel A and Panel B reveals that such a result can be obtained with the rook contiguity matrix,

although the rook contiguity matrix captures slightly less spatial dependence than the queen contiguity matrix

because it considers fewer neighbors than the queen case.
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(a) Returns

(b) Squared returns

FIGURE 4 Spatial distribution of returns and squared returns, 2009
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TABLE 5 BC-SARCH model ML estimation results

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Panel A: Queen contiguity

α0 −0.837*** −1.901*** −1.782*** −1.708*** −1.870*** −1.997*** −1.815*** −1.365*** −1.604*** −1.639***

(0.111) (0.195) (0.169) (0.176) (0.187) (0.194) (0.220) (0.160) (0.232) (0.229)

α1 0.613*** 0.367*** 0.338*** 0.411*** 0.293*** 0.314*** 0.434*** 0.517*** 0.471*** 0.488***

(0.031) (0.040) (0.041) (0.038) (0.040) (0.038) (0.039) (0.032) (0.039) (0.039)

σ 2.021*** 2.922*** 2.375*** 2.025*** 1.898*** 2.270*** 2.778*** 1.836*** 2.006*** 2.112***

(0.008) (0.010) (0.010) (0.012) (0.010) (0.012) (0.013) (0.011) (0.015) (0.016)

λ 0.118 0.094 0.106 0.101 0.132 0.112 0.095 0.120 0.113 0.101

(0.214) (0.431) (0.313) (0.323) (0.316) (0.406) (0.558) (0.320) (0.504) (0.525)

n 759 766 766 761 763 769 776 766 765 767

Log-likelihood 560.3 1163.7 938.5 1174.0 1072.6 1227.2 1416.8 1267.7 1399.6 1486.6

Pseudo R2 0.221 0.070 0.039 0.050 0.041 0.037 0.108 0.160 0.160 0.117

Moran’s I −0.046 −0.017 −0.012 −0.018 −0.010 −0.018 −0.024 −0.035 −0.034 −0.021

(p-value) (0.983) (0.774) (0.700) (0.791) (0.656) (0.788) (0.872) (0.947) (0.944) (0.829)

J-B 8.052 2.601 0.405 0.800 0.591 1.193 5.509 3.679 1.880 3.792

(p-value) (0.018) (0.272) (0.817) (0.670) (0.744) (0.551) (0.064) (0.159) (0.391) (0.150)

Panel B: Rook contiguity

α0 −0.901*** −2.123*** −1.927*** −1.889*** −2.030*** −2.200*** −1.954*** −1.607*** −1.792*** −1.925***

(0.109) (0.186) (0.157) (0.170) (0.176) (0.189) (0.207) (0.159) (0.224) (0.222)

α1 0.580*** 0.296*** 0.287*** 0.352*** 0.235*** 0.246*** 0.395*** 0.437*** 0.413*** 0.405***

(0.030) (0.036) (0.037) (0.035) (0.036) (0.034) (0.036) (0.031) (0.036) (0.036)

σ 1.984*** 3.000*** 2.422*** 2.077*** 1.944*** 2.314*** 2.833*** 1.962*** 2.077*** 2.267***

(0.008) (0.010) (0.010) (0.012) (0.010) (0.012) (0.013) (0.011) (0.015) (0.015)

λ 0.120 0.093 0.105 0.099 0.130 0.111 0.092 0.117 0.111 0.096

(0.212) (0.434) (0.316) (0.329) (0.317) (0.418) (0.546) (0.340) (0.495) (0.528)

n 759 766 766 761 763 769 776 766 765 767

Log-likelihood 558.7 1157.7 936.0 1169.0 1069.4 1222.5 1416.1 1255.4 1394.4 1476.0

Pseudo R2 0.197 0.062 0.033 0.050 0.033 0.025 0.100 0.140 0.157 0.085

Moran’s I −0.044 −0.021 −0.016 −0.019 −0.009 −0.019 −0.024 −0.045 −0.040 −0.033

(p-value) (0.957) (0.786) (0.724) (0.762) (0.618) (0.761) (0.826) (0.963) (0.942) (0.901)

J-B 5.479 2.153 0.195 0.774 0.589 1.112 5.477 3.187 1.815 2.592

(p-value) (0.065) (0.341) (0.907) (0.679) (0.745) (0.573) (0.065) (0.203) (0.404) (0.274)

Note: For H0 : λ = 1, the null is rejected in all cases. Standard errors appear in parentheses. Pseudo R2 is computed as the squared

correlation between the observed and predicted values of the dependent variable (Anselin, 1988). Diagnostic tests, including Moran’s I

test and the J-B (Jarque–Bera) test, are implemented to examine the spatial dependence and normality of the residuals. ∗∗∗ p < 0.01;
∗∗ p < 0.05; ∗ p < 0.1

Of particular interest is the transformation parameter λ. In every year, the estimated coefficients appear to

be very close to zero, ranging from 0.094 for 2010 to 0.132 for 2013. The t-test indicates that the null hypothesis

that λ = 0 is not rejected and thus λ is not significantly different from zero, pointing to a log-linear form as

the best fit. If the test is based on the null hypothesis that λ = 1, the null hypothesis is clearly rejected for all

years (results available from the author upon request). Therefore, the estimation results of the BC-SARCH

model applied to the empirical data indicate that there is strong evidence against a linear model and in favor
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of a log-linear model with λ → 0. A further implication of the estimated λ concerns the CES-type volatility

production function presented in equation (6) in Section 3, where λ is viewed as the substitution parameter and is

used to derive the elasticity of substitution η = 1
1−λ . The estimated values of λ close to 0 suggest values of η

close to 1 across the study period. Recalling that the zero value of λ and the value of the unity of η imply that

the production function takes the Cobb-Douglas form where autonomous variance and neighborhood-induced

variance are two inputs, it can be concluded that the neighborhood-induced variance is as important as the

autonomous variance in aggregate variance.

Finally, at the bottoms of each panel in Table 5, several model-specification tests are performed to verify

the validity of the estimated BC-SARCH model using Moran’s I test and the Jarque-Bera normality test for

the residuals. The Moran’s I test of the residuals fails to reject the null hypothesis of the absence of spatial

dependence, thus suggesting that the spatial dependence has been entirely captured by the model and is not

left in the residuals. With regard to normality, the Jarque–Bera statistic confirms the normality behavior of the

estimated residuals. The same conclusion can be drawn when both tests are replicated using the rook contiguity

matrix, which further strengthens the usefulness of the BC-SARCH model.

All in all, the above results support that the presence of conditional volatility over space is non-trivial and the

proposed BC-SARCH model is a powerful tool for modeling such spatially dependent heterogeneity. The results

further reveal that a model of the log-linear form may provide an adequate representation of spatial volatility.

From an economic perspective, the most well-known benefits of using a log-linear model is that it can not only

approximate a normal distribution and reduce skewness but also make it easier to interpret the empirical results.

While a Box-Cox transformation severely complicates the interpretation of the coefficients, the coefficients of

a log-linear model lend themselves to straightforward interpretations such as elasticity, a measurement of the

responsiveness of one variable to a change in another variable in percentage terms. Therefore, as discussed

in Section 3, a log-linear model allows α1 to be interpreted as neighborhood elasticity, which measures the

percentage change in volatility of neighboring locations with respect to a one percent change in volatility in

one location. Table 6 reports the estimation results of the final log-linear model in equation (4), which are

obtained using the ML method. The results reveal that, despite the simplicity and convenience of the model,

the main findings remain unaltered.

The estimated coefficients of the spatial dependence parameter α1, i.e. neighborhood elasticity, are still

positive and highly significant at the 1% significance level across all years with almost the same magnitudes as

those obtained with the BC-SARCH model, suggesting an inherent volatility dependence among cross-sectional

units. Values of the coefficients range from 0.296 for 2013 to 0.623 for 2019 with a cross-sectional average of

0.435 for the queen contiguity, while for the rook contiguity it varies between 0.240 for 2013 and 0.587 for 2009
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TABLE 6 Log-linear model estimation results

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Panel A: Queen contiguity

α0 −0.990*** −2.155*** −2.101*** −2.039*** −2.363*** −2.438*** −2.079*** −1.698*** −1.890*** −1.937***

(0.118) (0.189) (0.179) (0.183) (0.194) (0.202) (0.193) (0.169) (0.183) (0.187)

α1 0.623*** 0.380*** 0.344*** 0.414*** 0.296*** 0.318*** 0.449*** 0.521*** 0.499*** 0.502***

(0.038) (0.050) (0.052) (0.049) (0.054) (0.053) (0.048) (0.044) (0.045) (0.045)

n 759 766 766 761 763 769 776 766 765 767

Log-likelihood -1510.6 -1600.0 -1563.4 -1530.1 -1565.8 -1601.3 -1631.6 -1551.6 -1560.1 -1568.5

Pseudo R2 0.343 0.112 0.088 0.133 0.063 0.075 0.157 0.224 0.206 0.202

Moran’s I −0.048 −0.019 −0.014 −0.019 −0.010 −0.019 −0.026 −0.036 −0.037 −0.022

(p-value) (0.987) (0.801) (0.735) (0.806) (0.662) (0.798) (0.885) (0.954) (0.958) (0.840)

J-B 8.273 22.672 14.573 17.413 16.360 18.642 24.657 20.713 14.837 18.736

(p-value) (0.016) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000)

Panel B: Rook contiguity

α0 −1.078*** −2.398*** −2.269*** −2.243*** −2.550*** −2.674*** −2.250*** −1.988*** −2.112*** −2.243***

(0.113) (0.178) (0.167) (0.173) (0.179) (0.188) (0.182) (0.167) (0.176) (0.182)

α1 0.587*** 0.311*** 0.291*** 0.357*** 0.240*** 0.253*** 0.404*** 0.439*** 0.441*** 0.424***

(0.036) (0.047) (0.048) (0.046) (0.049) (0.049) (0.044) (0.043) (0.043) (0.044)

n 759 766 766 761 763 769 776 766 765 767

Log-likelihood -1513.4 -1606.1 -1566.2 -1535.1 -1568.9 -1605.7 -1633.7 -1564.8 -1566.2 -1579.2

Pseudo R2 0.352 0.094 0.081 0.122 0.053 0.061 0.156 0.192 0.195 0.175

Moran’s I −0.047 −0.023 −0.017 −0.019 −0.009 −0.019 −0.027 −0.047 −0.045 −0.034

(p-value) (0.968) (0.810) (0.743) (0.766) (0.626) (0.770) (0.856) (0.970) (0.963) (0.912)

J-B 11.391 24.190 15.280 18.336 16.353 19.237 25.601 21.514 14.867 19.466

(p-value) (0.003) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000)

Note: Standard errors appear in parentheses. Pseudo R2 is computed as the squared correlation between the observed and predicted values

of the dependent variable (Anselin, 1988). Diagnostic tests, including Moran’s I test and the J-B (Jarque–Bera) test, are implemented to

examine the spatial dependence and normality of the residuals. ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1

with a cross-sectional average of 0.375. This result suggests that, irrespective of the spatial weight matrix used, a

1% increase in volatility leads to an approximately 0.4% increase in volatility in neighboring locations.

Conducting the same diagnostic tests as I applied to the BC-SARCH model for the log-linear model reveals

a similar regime. Moran’s I test confirms that no evidence of remaining residual spatial dependence is found.

Although the Jarque-Bera test rejects normality, the small values of the statistic imply that there is no severe

departure from normality. In particular, when compared with the observed deviation from normality in the

unconditional distribution of the squared returns presented in Table 3, the improvement in the normality of the

residuals obtained by adopting the conditional log-linear model is substantial. To further examine how well the

log-linear model identifies the spatially dependent pattern of volatility, the estimated squared returns obtained

from the model for the year 2017 are plotted over the census tracts on the 3D maps with two views presented

in Panels (a) and (b) of Figure 5, respectively corresponding to the queen contiguity and rook contiguity. As can

23



be seen, the spatial dependence pattern is well reproduced by the model for both weight matrices. While the

lowest estimates of squared returns are distributed over the north-east side past downtown Chicago, the estimated

squared returns show clear spikes on the west and south sides of the city, with distinct clusters. All in all, the

simplified log-linear model appears to be an appropriate tool with which to describe the spatial dependence of

volatility in the Chicago housing market.

Arguably, it might be worthwhile examining the possibility of applying the unchosen alternative, i.e. the

linear model in equation (3), to identify the spatially dependent volatility pattern. The estimation results are

reported in Table 7. As can be seen, the resulting estimates of α1 consistently exhibit substantial and statistically

significant spatial heteroskedasticity and volatility clustering across the cross-sectional units, even with the

use of the simplest linear model. However, although the estimated coefficients remain statistically significant

at the 1% significance level for every year, they are somewhat lower than those found in the log-linear model

with greater variation over time. For extreme cases, the coefficient decreases from 0.344 to 0.190 for 2011,

and from 0.414 to 0.204 for 2012. Nevertheless, the largest deviation from the log-linear model is detected in the

diagnostic tests. Even though there is no remaining spatial dependence in the estimated residuals according to

Moran’s I test, the residuals severely depart from normality based on the Jarque-Bera test statistic and thus the

statistical inference becomes increasingly less robust.

The fact that the log-linear model is far less misspecified than the linear model can also be illustrated by

several test statistics based on the information matrix. As described byWhite (1982), information-matrix equality

may be used as the basis for a test of model misspecification. Let J(θ) denote the negative of the expectation

of the Hessian and K(θ) denote the expected outer product of the gradients for an unknown p-dimensional

parameter vector θ. Then

J(θ) := −E

[
∂2l(θ)
∂θ∂θ′

]
and K(θ) := E

[
∂l(θ)
∂θ

(
∂l(θ)
∂θ

)′]
, (16)

where l(θ) is the log-likelihood function. White (1982) proposes the information matrix (IM) test, which exploits

the fact that, under correct model specification, J(θ0) = K(θ0), which also implies tr
(
J(θ0) − K(θ0)

)
= 0,

where θ0 denotes the true value of the parameter vector and tr(A) is the trace of matrix A. The contrapositive

statement implies that a difference between J(θ0) and K(θ0) indicates the presence of model misspecification.

Thus if the information matrix equality is violated (i.e. J(θ0) 6= K(θ0)), this is evidence against the model.

In contrast to the IM test, which relies on the difference between J(θ0) and K(θ0), Presnell and Boos (2004)

propose an alternative test — the in-and-out-of-sample (IOS) test based on the information-matrix ratio. Let

yi, ..., yn denote independent random vectors with hypothesized densities or probability mass functions f(y, θ),
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(a) Queen contiguity

(b) Rook contiguity

FIGURE 5 Estimated squared returns, 2017
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TABLE 7 Linear model estimation results

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Panel A: Queen contiguity

α0 0.213*** 0.139*** 0.176*** 0.116*** 0.129*** 0.127*** 0.095*** 0.076*** 0.073*** 0.073***

(0.037) (0.021) (0.024) (0.015) (0.015) (0.017) (0.016) (0.013) (0.012) (0.012)

α1 0.490*** 0.328*** 0.190*** 0.204*** 0.207*** 0.181*** 0.411*** 0.503*** 0.473*** 0.395***

(0.045) (0.053) (0.058) (0.057) (0.057) (0.058) (0.049) (0.045) (0.046) (0.050)

n 759 766 766 761 763 769 776 766 765 767

Log-likelihood -985.9 -580.7 -635.7 -285.1 -266.5 -397.1 -357.4 -184.0 -168.9 -116.8

Pseudo R2 0.190 0.078 0.025 0.028 0.029 0.022 0.126 0.195 0.172 0.117

Moran’s I −0.027 −0.004 −0.005 −0.003 −0.005 −0.005 −0.020 −0.016 −0.018 −0.015

(p-value) (0.901) (0.556) (0.571) (0.536) (0.570) (0.581) (0.828) (0.761) (0.789) (0.757)

J-B 74821.9 27748.2 44022.3 290091.6 39377.9 229872.0 72626.3 25940.6 21822.0 130526.8

(p-value) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Panel B: Rook contiguity

α0 0.243*** 0.153*** 0.185*** 0.120*** 0.140*** 0.139*** 0.102*** 0.084*** 0.079*** 0.089***

(0.037) (0.021) (0.023) (0.015) (0.015) (0.017) (0.015) (0.013) (0.012) (0.012)

α1 0.415*** 0.258*** 0.152*** 0.177*** 0.134*** 0.099* 0.361*** 0.453*** 0.428*** 0.259***

(0.044) (0.049) (0.051) (0.051) (0.051) (0.052) (0.046) (0.043) (0.044) (0.049)

n 759 766 766 761 763 769 776 766 765 767

log-likelihood -995.4 -584.7 -637.0 -285.3 -269.6 -400.2 -360.6 -186.2 -168.3 -131.1

Pseudo R2 0.167 0.062 0.021 0.029 0.016 0.009 0.122 0.195 0.175 0.063

Moran’s I −0.032 −0.008 −0.005 −0.001 −0.005 −0.003 −0.008 −0.023 −0.030 −0.025

(p-value) (0.896) (0.607) (0.553) (0.488) (0.556) (0.525) (0.618) (0.819) (0.886) (0.848)

J-B 70293.5 27613.0 43351.8 287672.1 38115.9 225203.8 77533.1 21614.9 20132.4 126366.3

(p-value) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Note: Standard errors appear in parentheses. Pseudo R2 is computed as the squared correlation between the observed and predicted values

of the dependent variable (Anselin, 1988). Diagnostic tests including Moran’s I test and the J-B (Jarque–Bera) test are implemented to

examine the spatial dependence and normality of the residuals. ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1

where θ is an unknown p-dimensional parameter. Let θ̂ be the maximum likelihood estimator of θ, and θ̂(i) be

the MLE when the i-th observation is deleted from the entire sample. Presnell and Boos (2004) suggest that

the single likelihood f
(
yi, θ̂(i)

)
can be regarded as the predictive likelihood by the other observations. Their

proposed test statistic is the logarithm of the IOS likelihood ratio:

IOS = log
( ∏n

i=1 f
(
yi, θ̂

)∏n
i=1 f

(
yi, θ̂(i)

))
=

n∑
i=1

[
log f

(
yi, θ̂

)
− log f

(
yi, θ̂(i)

)]
, (17)

and its asymptotic form is

IOSA = tr
(

− Ĵ−1(
θ̂
)
K̂

(
θ̂
))

(18)

and IOS − IOSA = op
(
n−1/2)

. Like the IM test, IOSA also compares the two information matrices, but in
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a ratio form instead of a subtractive form. If the model is correctly specified, it is expected that IOSA
p→

tr
(
J(θ0)−1K(θ0)

)
= p, the trace of the p-dimensional identity matrix. Under model misspecification, the two

forms of the information generally differ, in which case IOSA is expected to differ systematically from p.13

The two trace-based test statistics are used to statistically detect the model missipecification: the one under

the null hypothesis that tr
(
J(θ0) − K(θ0)

)
= 0 (Trace IM test) and the other under the null hypothesis that

tr
(
J(θ0)−1K(θ0)

)
= p, i.e. tr

(
J(θ0)−1K(θ0)

)
− p = 0 (IOSA test). Both J(θ) and K(θ) are derived in

the Appendix. The resulting statistics are reported in Table 8 for both the linear and log-linear specifications,

where, as before, I report the results using the queen contiguity in Panel A and I report the results using the

rook contiguity in Panel B. As can be seen from Table 8, the values of the Trace IM test statistic for the linear

specification substantially deviate from zero across all years, suggesting that the linear model is misspecified.

The IOSA test statistic reinforces the result, as their values in the case of the linear specification are found to

be significantly more different from zero than those in the case of the log-linear specification. Based on these

results, it can be concluded that the log-linear specification dominates the linear specification.

TABLE 8 Model specification test statistics

Panel A: Queen contiguity Panel B: Rook contiguity

Trace IM IOSA Trace IM IOSA

Linear Log-linear Linear Log-linear Linear Log-linear Linear Log-linear

2009 −23.280 0.191 29.800 5.831 −21.095 0.237 27.512 5.199

2010 −102.798 0.339 17.292 11.801 −99.757 0.281 16.512 9.465

2011 −95.008 0.114 19.117 12.197 −93.564 0.187 18.845 9.413

2012 −1560.199 0.278 48.810 14.573 −1552.325 0.134 48.360 12.207

2013 −618.555 0.160 18.447 14.981 −594.550 0.206 17.609 11.928

2014 −779.468 0.203 43.842 14.020 −753.519 0.136 41.853 11.064

2015 −569.047 0.430 31.230 13.109 −579.039 0.324 30.627 10.870

2016 −835.373 0.423 22.307 12.003 −755.002 0.376 21.717 10.028

2017 −809.996 0.442 17.641 13.003 −783.515 0.492 17.213 10.698

2018 −2628.956 0.509 35.722 14.809 −2338.951 0.416 33.083 12.225

Note: Trace IM test: tr
(
J(θ0) − K(θ0)

)
= 0, IOSA test: tr

(
J(θ0)−1K(θ0)

)
− p = 0.

Comparing standard errors using those of the two information matrices (the diagonal elements of J(θ0)−1

and K(θ0)−1
) is also able to provide evidence of model misspecification. In a correctly specified model, these

standard errors should be in agreement. As the results reported in Table 9 indicate, it can be seen that this

is obviously not the case for the linear specification, whereas there is better agreement with the log-linear

13More recently, Zhou et al. (2012) propose a test statistic that takes the form tr(J(θ0)−1K(θ0))/p, which is denoted as the information
ratio (IR) test, and show that the statistic asymptotically follows a normal distribution.
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specification.

TABLE 9 Standard errors for linear and log-linear models

Panel A: Queen contiguity Panel B: Rook contiguity

Linear Log-linear Linear Log-linear

J(θ0)−1 K(θ0)−1 J(θ0)−1 K(θ0)−1 J(θ0)−1 K(θ0)−1 J(θ0)−1 K(θ0)−1

2009 α0 0.037 0.063 0.124 0.109 0.036 0.065 0.119 0.108

α1 0.050 0.027 0.040 0.036 0.046 0.029 0.038 0.035

σ 0.039 0.013 0.153 0.165 0.040 0.014 0.153 0.169

2010 α0 0.022 0.041 0.190 0.164 0.021 0.040 0.174 0.152

α1 0.056 0.045 0.051 0.046 0.049 0.041 0.046 0.042

σ 0.013 0.007 0.192 0.247 0.014 0.007 0.196 0.254

2011 α0 0.024 0.047 0.181 0.158 0.023 0.046 0.164 0.148

α1 0.057 0.059 0.053 0.047 0.051 0.051 0.047 0.044

σ 0.016 0.008 0.175 0.213 0.016 0.008 0.177 0.216

2012 α0 0.015 0.026 0.190 0.175 0.015 0.025 0.176 0.168

α1 0.061 0.064 0.051 0.048 0.053 0.057 0.046 0.045

σ 0.006 0.001 0.164 0.205 0.006 0.001 0.167 0.209

2013 α0 0.015 0.025 0.201 0.190 0.015 0.024 0.184 0.173

α1 0.059 0.062 0.055 0.053 0.052 0.054 0.050 0.048

σ 0.006 0.002 0.180 0.222 0.006 0.003 0.182 0.225

2014 α0 0.017 0.029 0.201 0.188 0.017 0.028 0.183 0.175

α1 0.059 0.047 0.052 0.050 0.053 0.059 0.047 0.046

σ 0.008 0.002 0.190 0.240 0.008 0.002 0.193 0.245

2015 α0 0.016 0.023 0.199 0.167 0.015 0.023 0.183 0.159

α1 0.052 0.026 0.049 0.043 0.047 0.025 0.045 0.040

σ 0.007 0.003 0.195 0.255 0.007 0.003 0.196 0.257

2016 α0 0.013 0.021 0.177 0.153 0.013 0.020 0.167 0.150

α1 0.051 0.027 0.045 0.041 0.046 0.023 0.042 0.039

σ 0.005 0.002 0.167 0.210 0.005 0.002 0.173 0.222

2017 α0 0.013 0.023 0.186 0.160 0.012 0.022 0.173 0.151

α1 0.051 0.040 0.046 0.041 0.045 0.032 0.042 0.038

σ 0.005 0.002 0.172 0.208 0.005 0.002 0.174 0.212

2018 α0 0.012 0.021 0.198 0.165 0.012 0.021 0.184 0.160

α1 0.053 0.041 0.048 0.042 0.047 0.041 0.044 0.040

σ 0.004 0.001 0.174 0.217 0.004 0.001 0.179 0.226
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5.4 Pooling the Time-series and Cross-Section Data

Although the cross-sectional results show consistent evidence of the presence of spatially dependent volatility

under multiple model specifications, the estimates point to the need to avoid unreliable conclusions by appro-

priately accounting for the time-varying heterogeneity that arises from unobserved factors to avoid unreliable

conclusions. The rationale is provided in Figure 6, which plots the estimated time-varying spatial coefficients of

α1 together with the 95% pointwise confidence intervals obtained from the BC-SARCH and the final log-linear

models over the 2009-2018 period, where the results reported in Panels (a) and (b) correspond to the queen and

rook contiguity matrices, respectively. Figure 6 shows that, over the entire observed time period, the coefficient

of α1 was substantial and almost identical across the two models, irrespective of how the spatial weights are

defined, indicating that neighborhood plays an important role in explaining volatility in the Chicago housing

market. The magnitude of this effect, however, is not constant over time. The highest values of the coefficient

were observed in 2009 after the outbreak of the financial crisis, after which values started to decrease in 2010

and reached their lowest level in 2013. After 2013, the coefficient exhibits a continuously increasing trend. In

summary, the results indicate the varying but moderate persistence of the spatially-dependent volatility dynamics

over the last decade in the Chicago housing market.

(a) Queen contiguity (b) Rook contiguity

FIGURE 6 Estimated spatial coefficients of α1

In the finance literature, it has been well documented that the volatility of stock returns is higher during

economic recessions (Schwert, 1989; Hamilton and Lin, 1996). As a result we observe high volatility clustering

more frequently than low volatility, giving rise to an asymmetric pattern of volatility clustering. Recently, Ning

et al. (2015) investigate the asymmetric pattern in volatility clustering for both the stock and foreign exchange
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markets. They find evidence that the frequency probability of volatility clustering (for both high and low

volatility) tends to increase during the crisis period. Figure 7 shows that the U.S. housing market has been no

exception. The figure depicts the S&P Case-Shiller home price index (HPI) and the return data by taking the

monthly change in the natural logarithm of the index for the U.S. in Panel (a) and for Chicago in Panel (b),

respectively, with the shaded area representing the period of the financial crisis (2007-2009). As can be easily

noticed, for both markets extreme return values are concentrated during the crisis, pointing to abnormally high

volatility during this period. For both returns, the frequency of volatility clustering is also higher.

(a) U.S.

(b) Chicago

FIGURE 7 Home price index and its returns in the U.S. and Chicago

Several studies in the housing literature suggest that the degree to which volatility depends on spatial

dependence also varies across market conditions. For example, Miao et al. (2011) show that spatial linkages
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appear more intense during the active phase (1999–2006) than during the tranquil phase (1989–1998). Zhu

et al. (2013) further define the period after 2006 as the crisis phase (2007-2009) and observe the increased

intensity during the crisis period. Moreover, they find that, compared with spatial interactions that occur during

tranquil and boom phases, spatial interdependence is much more distinct during the crisis. The present study

suggests that such patterns identified at a large spatial scale (the MSA scale) remain similar at a much finer

spatial scale (the census-tract scale). While the strongest spatial dependence of volatility between regions is

detected during the financial crisis, a sizable increase in the dependence is also observed during the recent upturn

that began in 2013 when housing prices started to recover from the declines recorded during the crisis. In this

sense, the aspects of time-varying heterogeneity across census tracts have to be considered in the estimation,

and adding the time-varying spatial effects to the regression model may be useful.

Many studies have examined temporal heterogeneity in standard panel data models, mostly on structural

breaks or change points (e.g. Feng et al., 2008; Bai, 2010; Kim, 2011; Baltagi, Kao, et al., 2017). The spatial

econometric literature has recently developed interest in heterogeneous spatial autoregressive panel data models,

where the model parameters are heterogeneous, i.e. are different for distinct units in the sample (Aquaro

et al., 2015; LeSage et al., 2017). The literature on temporal heterogeneity in spatial panel data models is,

however, limited. Only a handful of studies have considered structural breaks in heterogeneous spatial panels.

Sengupta (2017) considers hypothesis-testing for a structural change in a spatial panel model without fixed

effects, while Li (2018) proposes and studies fixed-effects spatial panel data models with structural change using

the quasi-maximum likelihood method. Some scholars in the finance literature have also attempted to make

similar explorations of spatial panel data models with time-varying parameters. For example, Blasques et al.

(2016) and Catania and Billé (2017) extend the spatial static panel data model by introducing time-varying spatial

dependence, but their models are most suitable for a case with a large time dimension and a small cross-sectional

dimension.

Very recently, Xu andYang (2019) consider fixed-effects spatial panel data models with temporal heterogeneity

in regressions and spatial coefficients by focusing on testing problems. They introduce a general method, the ad-

justed quasi score (AQS) method, for constructing the specification tests for temporal homogeneity/heterogeneity

in regression and spatial coefficients in spatial panel data models, allowing for the existence of spatial and

temporal heterogeneity in the intercepts (or fixed effects) of the model. This study presents the first application

of their method to empirically test temporal heterogeneity in the spatial dependence of volatility, neighborhood

elasticity in the log-linear model, in the housing market.

Changing notations to adapt to the changing context in which a dependent variable is log-squared returns

and no explanatory variable is included as described in equation (4), first consider the following simplest panel
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spatial lag model with individual specific fixed effects or one-way fixed effects (1FE-SL):

log y2
it = α0t + α1t

n∑
j 6=i

wij log y2
jt + ui + zit, (19)

where α1t is neighborhood elasticity at time t, ui denotes the individual-specific fixed effects or the spatial

heterogeneity in the intercept, and zit is an n × 1 vector of IID disturbances with mean zero and variance σ2.

As the aim of the present study is to test the hypothesis that neighborhood elasticity stays the same over time,

only tests of temporal homogeneity in spatial coefficients, i.e. H0 : α11 = · · · = α1T = α1, are conducted,

allowing for the presence of unobserved cross-sectional heterogeneity in intercepts, i.e. the individual fixed

effects ui.

They further extend their tests to a panel spatial lag model with both individual and time-specific fixed effects

or two-way fixed effects (2FE-SL), which can be written in the following form:

log y2
it = α0t + α1t

n∑
j 6=i

wij log y2
jt + ui + vt + zit, (20)

where vt are the unobserved time-specific effects or the unobserved temporal heterogeneity in the intercept.

Based on these models, two types of AQS tests (naive and robust) are proposed and these tests are fully extended

to the spatial panel data models with both spatial lag and error (SLE) dependence, where the disturbances are

also subject to spatial interactions. However, since they show that the robust tests have much superior finite

and large sample properties than the native tests through Monte Carlo simulation, and a model specification

search is not of primary interest in the present study, only asymptotically valid and non-normality robust AQS

tests and spatial lag models given in equations (19) and (20) are considered.

As the proposed tests are intended for balanced panel data, only census tracts that have the same number

of time observations are included to obtain a balanced panel. The purpose of constructing the pseudo-panel

data is to model time heterogeneity and make full use of information in the data, improving the accuracy and

efficiency of estimation.14 The resulting pseudo-panel consists of a total of 716 census tracts over 10 time

periods between 2009 and 2018. The special weight matrices are based on queen and rook contiguity matrices,

and then row-normalized as before.

Coming back to Figure 6, it can be suggested that around the year 2013, there is a shift in the estimated

value of neighborhood elasticity α1. Thus, the tests are conducted on the full period (2009-2018) and two

sub-periods (2009-2013 and 2014-2018). The 2009-2013 period is further broken down into two sub-periods,

14Most existing spatial panel estimation methods are designed for balanced panel data, and are not effective for unbalanced panels

because of the computational burden associated with inverting a large spatial weighting matrix.
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2009-2010 and 2011-2013, to examine whether the structure changes during the initial recovery phase after the

financial crisis. Table 10 summarizes the values of the test statistics and their p-values for the robust AQS tests

for temporal homogeneity based on both the full period and several sub-periods, fitted using the two models:

a one-way fixed-effects spatial lag model (1FE-SL) and a two-way fixed-effects spatial lag model (2FE-SL).

TABLE 10 Tests for temporal homogeneity of neighborhood elasticity

Panel A: Queen contiguity Panel B: Rook contiguity

1FE-SL 2FE-SL 1FE-SL 2FE-SL

t1 − t10 (2009-2018) 152.302 12.030 160.863 8.949

(0.000) (0.212) (0.000) (0.442)

t1 − t5 (2009-2013) 60.308 8.891 64.414 3.258

(0.000) (0.064) (0.000) (0.516)

t6 − t10 (2014-2018) 16.184 5.528 16.890 6.224

(0.003) (0.237) (0.002) (0.183)

t1 − t2 (2009-2010) 34.923 0.115 39.256 0.160

(0.000) (0.735) (0.000) (0.690)

t3 − t5 (2011-2013) 14.679 5.938 13.163 3.665

(0.001) (0.051) (0.001) (0.160)

Note: p-values appear in parentheses in every second row. 1FE-SL: one-way fixed-effects spatial
lag model; 2FE-SL: two-way fixed-effects spatial lag model.

From the abovementioned results it can be seen that, when the 1FE-SL is applied, i.e. temporal heterogeneity

in intercepts is not controlled for, tests based on the full data clearly reject the null hypothesis of temporal

homogeneity in neighborhood elasticity. To test whether the null hypothesis holds when 2013 is a change

point, the same set of tests is applied to the two sub-periods, 2009-2013 and 2014-2018. The resulting statistics

reject the null hypothesis and exhibit no change point. The results for 2009-2010 and 2011-2013 are also fairly

stable, consistently rejecting the null hypothesis. Overall, a rejection of the null hypothesis in any sub-period

indicates that neighborhood elasticity is temporally heterogeneous and it seems to stem from full heterogeneity

instead of the existence of change points.

When the 2FE-SLmodel is applied, however, the null hypothesis of homogeneity of neighborhood elasticity is

not rejected in either full period or any sub-period. This suggests that, when the time fixed effect is taken into

account, neighborhood elasticity becomes homogeneous. It is important to note that when the null hypothesis of

homogeneity is accepted in the full period, tests for sub-periods are redundant in the sense that acceptance of the

null hypothesis for full period also results in accepting the null hypothesis for any sub-period. Nonetheless, the

test results for the sub-periods lend further support to the homogeneity of neighborhood elasticity. These findings
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hold irrespective of the spatial weight matrix used. In summary, the test results show that, after controlling for

both spatial and temporal heterogeneity in the intercepts, the homogeneity of neighborhood elasticity is achieved

and there exists no structural change in the term, and moreover a homogeneous spatial panel data model can

be used and specifying change points is not necessary.

6 Robustness and Sensitivity Analysis

6.1 Alternative Volatility Measure

Although the estimation of the spatial dependence parameter for the BC-SARCH model is based on the

squared returns, many researchers have relied on other measures of volatility such as absolute returns.15 To

ensure that the results are not sensitive to the underlying measurement concepts, it is necessary to repeat the

procedure with the alternative measures of volatility. Therefore, the estimation of the BC-SARCH model is

repeated with absolute returns. Interestingly, the absolute returns tend to result in equally strong evidence for

spatially dependent volatility. This is to be expected, as squared returns are a simple one-to-one transformation

of absolute returns, so if squared returns have spatially dependent volatility features, then so will absolute returns.

Indeed, Figure 8 shows almost identical spatial patterns for both squared returns and absolute returns.

To confirm this expectation, the following modification of the BC-SARCH model is specified:

|yi|λ − 1
λ

= α0 + α1

n∑
j 6=i

wij
|yj |λ − 1

λ
+ εi, (21)

where |yi| denotes the absolute returns at location i and |yj | denotes the values at surrounding locations j (j 6= i).

Table 11 presents the results obtained when the model is estimated with the same econometric methodology

as in Section 3, but the absolute returns are used as the dependent variable. The results coincide with those

derived earlier in Table 5 using the squared returns. The coefficient on α1 remains almost unchanged in both

magnitude and statistical significance when using absolute returns by suitably rescaling the transformation

parameter λ. Adjusted in accordance with the transformation, the estimates of λ are now almost twice as large

when using absolute returns than using squared returns, and thus the test statistic for the null hypothesis that

λ = 0 becomes highly significant. These findings also hold irrespective of the choice of the spatial weight

matrix. Altogether, the results suggest that the alternative measure of volatility exhibits a similar ability to detect

the spatial volatility clustering behavior.

15Squared returns have been employed by Lobato and Savin (1998), Gil-Alana (2003), Cavalcante and Assaf (2004), Cotter (2005)

and Elder and Jin (2007), whereas absolute returns have been used by Ding and Granger (1996), Sibbertsen (2004) and others.
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(a) Squared Returns (b) Absolute Returns

FIGURE 8 Spatial distribution of (a) squared returns and (b) absolute returns, 2017

Note: The listed numbers refer to the codes for Chicago community areas (see Table 13 in the Appendix for details).

6.2 Alternative Spatial Weight Matrix

To further confirm that the estimates are robust to alternative weight matrices, three distance-based spatial

weight matrices are used in addition to the simple contiguity matrices: (a) fixed distance band, (b) inverse

distance, and (c) inverse distance squared. With the fixed distance band method, wij = 1 if dij ≤ C and zero

if dij > C, while in the inverse distance method, wij = 1/dk
ij if dij ≤ C and zero if dij > C, where C is

a distance cutoff beyond which no spatial relationship is assumed, dij is the distance in miles between the

centroids of census tracts i and j, and k is a dampening coefficient whose magnitude determines how quickly

the spatial relationship between a tract and its neighbors declines with distance. The inverse distance method

allows neighbors located closer to each other to have higher weights than neighbors located far away from each

other. These weight matrices are also row-normalized. Here, the value of C is set equal to 3 (miles) between

census-tract centroids such that every census tract has at least one neighbor, and k is set equal to 1 and 2 to

implement inverse distance and inverse distance squared matrices, respectively. These weight matrices are

also row-normalized.

Space limitations prevent me from comparing the entire estimation output for the three alternative cases, so

the focus here is exclusively on the specific estimates for the key parameters, α1 and λ for the BC-SARCH
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TABLE 11 BC-SARCH model ML estimation results using absolute returns

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Panel A: Queen contiguity

α0 −0.402*** −0.869*** −0.861*** −0.802*** −0.887*** −0.934*** −0.827*** −0.646*** −0.758*** −0.774***

(0.050) (0.071) (0.073) (0.067) (0.065) (0.068) (0.071) (0.061) (0.069) (0.076)

α1 0.614*** 0.373*** 0.330*** 0.410*** 0.291*** 0.317*** 0.439*** 0.512*** 0.467*** 0.490***

(0.028) (0.031) (0.038) (0.032) (0.031) (0.031) (0.029) (0.027) (0.029) (0.032)

σ 0.463*** 0.593*** 0.527*** 0.421*** 0.409*** 0.476*** 0.552*** 0.383*** 0.421*** 0.450***

(0.005) (0.005) (0.007) (0.006) (0.004) (0.005) (0.005) (0.004) (0.006) (0.008)

λ 0.279*** 0.265*** 0.260*** 0.264*** 0.323*** 0.285*** 0.264*** 0.305*** 0.284*** 0.250***

(0.033) (0.046) (0.042) (0.032) (0.031) (0.037) (0.045) (0.031) (0.037) (0.044)

n 759 766 766 761 763 769 776 766 765 767

Log-likelihood -4.7 238.7 148.8 295.2 240.6 289.7 356.8 328.2 374.7 418.8

Pseudo R2 0.311 0.115 0.075 0.109 0.071 0.070 0.159 0.214 0.217 0.198

Moran’s I −0.045 −0.017 −0.012 −0.018 −0.009 −0.018 −0.025 −0.034 −0.034 −0.021

(p-value) (0.982) (0.774) (0.691) (0.787) (0.651) (0.787) (0.873) (0.944) (0.945) (0.830)

J-B 18.293 1.377 5.442 1.685 2.351 1.450 0.527 2.580 3.778 1.737

(p-value) (0.000) (0.502) (0.066) (0.431) (0.309) (0.484) (0.768) (0.275) (0.151) (0.420)

Panel B: Rook contiguity

α0 −0.446*** −1.050*** −0.904*** −0.946*** −1.011*** −1.071*** −0.959*** −0.768*** −0.880*** −0.932***

(0.054) (0.087) (0.074) (0.083) (0.087) (0.083) (0.091) (0.067) (0.093) (0.088)

α1 0.583*** 0.290*** 0.325*** 0.351*** 0.243*** 0.257*** 0.395*** 0.456*** 0.418*** 0.410***

(0.030) (0.036) (0.036) (0.036) (0.037) (0.034) (0.035) (0.028) (0.033) (0.033)

σ 0.491*** 0.725*** 0.582*** 0.521*** 0.496*** 0.558*** 0.672*** 0.461*** 0.499*** 0.524***

(0.016) (0.017) (0.017) (0.023) (0.023) (0.018) (0.020) (0.015) (0.022) (0.019)

λ 0.235*** 0.189** 0.214*** 0.192** 0.235*** 0.223*** 0.191* 0.239*** 0.228** 0.214**

(0.050) (0.091) (0.068) (0.077) (0.078) (0.078) (0.104) (0.060) (0.093) (0.084)

n 759 766 766 761 763 769 776 766 765 767

Log-likelihood -6.3 232.4 145.8 289.9 237.5 284.5 355.6 316.1 370.1 407.5

Pseudo R2 0.317 0.095 0.062 0.097 0.057 0.054 0.154 0.180 0.206 0.158

Moran’s I −0.044 −0.021 −0.016 −0.019 −0.008 −0.019 −0.024 −0.044 −0.039 −0.033

(p-value) (0.956) (0.789) (0.722) (0.761) (0.612) (0.766) (0.832) (0.960) (0.941) (0.903)

J-B 11.433 1.205 5.249 1.593 1.763 1.646 0.273 1.074 3.001 0.661

(p-value) (0.003) (0.548) (0.072) (0.451) (0.414) (0.439) (0.873) (0.585) (0.223) (0.719)

Note: For H0 : λ = 1, the null is rejected in all cases. Standard errors appear in parentheses. Pseudo R2 is computed as the squared

correlation between the observed and predicted values of the dependent variable (Anselin, 1988). Diagnostic tests including Moran’s I

test and the J-B (Jarque–Bera) test are implemented to examine the spatial dependence and normality of the residuals. ∗∗∗ p < 0.01;
∗∗ p < 0.05; ∗ p < 0.1

model and α1 for the log-linear model. In Table 12 I report the estimation results for both the BC-SARCH and

log-linear models. The results reported in columns 1 and 2 confirm the validity of the BC-SARCH model in

describing the spatial dependence pattern in volatility. The signs and significance of the spatial dependence

parameter α1 are consistent with those reported in Table 5, although the magnitude appears to be larger compared

with simple contiguity. This is expected, as the distance between the centroids of census tracts is determined

to ensure that larger census tracts are connected and have at least one neighbor, leading smaller census tracts
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to have many other smaller census tracts as neighbors. The results also provide further support for the log-linear

model that is determined by the transformation parameter λ. The parameter estimates remain substantially

the same across specifications, with values around zero over the entire study period. Finally, the log-linear

model estimation results are given in column 3 and reveal that the coefficients of α1 retain the same signs and

significance levels as the BC-SARCH model, with only minor differences in magnitude. In sum, the results

of the estimations presented in Table 12 are essentially consistent with the results presented in Table 5 and

Table 6, proving the robustness and objectivity of the results.

7 Conclusion

Reducing housing price volatility has emerged as a critical challenge for housing policy-makers as higher

housing price volatility levels may discourage newly formed households from committing to homeownership.

To develop effective policies to better protect households from the consequences of volatility, an important task

for policy-makers and academics is to understand the nature and extent of housing price volatility. This paper

studies spatial variation of volatility in the Chicago housing market by proposing a flexible spatial volatility

model for squared returns based on a Box-Cox transformation, a technique that has been frequently used as both

a flexible functional form and as a decision device to distinguish between alternative model specifications. To

estimate the proposed model, an MLE procedure is employed to simultaneously estimate the transformation

parameter and the analytical form of spatial dependence in volatility.

The estimation results suggest that housing returns in Chicago show strong spatial dependence in volatility

and the commonly used log-linear functional form is appropriate, irrespective of variations in neighborhood

criteria. The appropriateness of the log-linear model is also determined through associated model diagnostics

and specification tests. This result has important economic implications for both researchers and housing market

practitioners. In the final log-linear model, a new practical indicator is proposed. Neighborhood elasticity,

captured by the parameter α1 in the model, provides a measure of how volatility in one neighborhood is

linked to that in surrounding neighborhoods. The average annual elasticity is found to be 0.4 across spatial

weight matrices, which can be used as a benchmark for comparing housing markets. The findings have

important practical implications. The spatial volatility clustering can be used in the forecasting context to obtain

appropriate confidence interval and thus helps policy-makers develop strategies to mitigate the impacts of

volatility transmission and the risk of contagion in the housing market. Finally, to identify whether neighborhood

elasticity remains constant over time, adjusted quasi score (AQS) tests for testing the presence of temporal

heterogeneity in spatial parameters in spatial panel data models are considered. The test results reveal that
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TABLE 12 Estimation results using alternative spatial weight matrix specifications

BC-SARCH Log-linear

α1 λ α1

Panel A: Fixed distance band

2009 0.927*** (0.048) 0.107 (0.227) 0.933*** (0.034)

2010 0.830*** (0.075) 0.094 (0.406) 0.847*** (0.064)

2011 0.768*** (0.086) 0.109 (0.307) 0.785*** (0.081)

2012 0.860*** (0.065) 0.104 (0.305) 0.867*** (0.058)

2013 0.788*** (0.085) 0.133 (0.298) 0.792*** (0.079)

2014 0.859*** (0.070) 0.115 (0.360) 0.862*** (0.059)

2015 0.902*** (0.064) 0.093 (0.492) 0.908*** (0.043)

2016 0.921*** (0.048) 0.124 (0.287) 0.923*** (0.038)

2017 0.910*** (0.053) 0.111 (0.378) 0.921*** (0.039)

2018 0.916*** (0.056) 0.101 (0.451) 0.922*** (0.038)

Panel B: Inverse distance

2009 0.930*** (0.043) 0.115 (0.205) 0.935*** (0.030)

2010 0.796*** (0.067) 0.096 (0.398) 0.814*** (0.063)

2011 0.748*** (0.075) 0.110 (0.298) 0.760*** (0.074)

2012 0.812*** (0.059) 0.104 (0.300) 0.817*** (0.062)

2013 0.734*** (0.072) 0.135 (0.294) 0.736*** (0.079)

2014 0.791*** (0.062) 0.117 (0.358) 0.796*** (0.067)

2015 0.854*** (0.057) 0.096 (0.489) 0.863*** (0.051)

2016 0.889*** (0.044) 0.125 (0.279) 0.891*** (0.044)

2017 0.877*** (0.049) 0.116 (0.384) 0.890*** (0.044)

2018 0.877*** (0.050) 0.104 (0.443) 0.884*** (0.046)

Panel C: Inverse distance squared

2009 0.841*** (0.036) 0.124 (0.190) 0.847*** (0.039)

2010 0.584*** (0.054) 0.098 (0.412) 0.612*** (0.066)

2011 0.549*** (0.057) 0.109 (0.302) 0.558*** (0.071)

2012 0.617*** (0.050) 0.103 (0.308) 0.625*** (0.065)

2013 0.500*** (0.054) 0.136 (0.305) 0.503*** (0.075)

2014 0.538*** (0.050) 0.116 (0.385) 0.548*** (0.072)

2015 0.664*** (0.048) 0.098 (0.517) 0.681*** (0.059)

2016 0.735*** (0.038) 0.125 (0.287) 0.735*** (0.053)

2017 0.716*** (0.044) 0.118 (0.419) 0.735*** (0.053)

2018 0.719*** (0.043) 0.103 (0.448) 0.730*** (0.054)

Note: Standard errors appear in parentheses. ∗∗∗ p < 0.01; ∗∗ p < 0.05;
∗ p < 0.1

neighborhood elasticity becomes homogeneous after controlling for both spatial and temporal heterogeneity

in the intercepts of the model.
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A Appendix

A.1 Analytical Derivatives for the BC-SARCH Process

The terms of the Hessian are the second and cross derivatives of equation (10) with respect to the parameter

vector θ, resulting in
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A.2 Chicago Community Areas

TABLE 13 Chicago community areas

# Name # Name # Name # Name

1 Rogers Park 21 Avondale 41 Hyde Park 61 New City

2 West Ridge 22 Logan Square 42 Woodlawn 62 West Elsdon

3 Uptown 23 Humboldt park 43 South Shore 63 Gage Park

4 Lincoln Square 24 West Town 44 Chatham 64 Clearing

5 North Center 25 Austin 45 Avalon Park 65 West Lawn

6 Lake View 26 West Garfield Park 46 South Chicago 66 Chicago Lawn

7 Lincoln Park 27 East Garfield Park 47 Burnside 67 West Englewood

8 Near North Side 28 Near West Side 48 Calumet Heights 68 Englewood

9 Edison Park 29 North Lawndale 49 Roseland 69 Greater Grand Crossing

10 Norwood Park 30 South Lawndale 50 Pullman 70 Ashburn

11 Jefferson Park 31 Lower West Side 51 South Deering 71 Auburn Gresham

12 Forest Glen 32 Loop 52 East Side 72 Beverly

13 North Park 33 Near South Side 53 West Pullman 73 Washington Height

14 Albany Park 34 Armour Square 54 Riverdale 74 Mount Greenwood

15 Portage Park 35 Douglas 55 Hegewisch 75 Morgan Park

16 Irving Park 36 Oakland 56 Garfield Ridge 76 O’Hare

17 Dunning 37 Fuller Park 57 Archer Heights 77 Edgewater

18 Montclaire 38 Grand Boulevard 58 Brighton Park

19 Belmont Cragin 39 Kenwood 59 McKinley Park

20 Hermosa 40 Washington Park 60 Bridgeport

A.3 Spatial Distribution of Returns and Squared Returns for Other Years
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(a) Returns

(b) Squared returns

FIGURE 9 Spatial distribution of returns and squared returns, 2010
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(a) Returns

(b) Squared returns

FIGURE 10 Spatial distribution of returns and squared returns, 2011
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(a) Returns

(b) Squared returns

FIGURE 11 Spatial distribution of returns and squared returns, 2012
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(a) Returns

(b) Squared returns

FIGURE 12 Spatial distribution of returns and squared returns, 2013
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(a) Returns

(b) Squared returns

FIGURE 13 Spatial distribution of returns and squared returns, 2014
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(a) Returns

(b) Squared returns

FIGURE 14 Spatial distribution of returns and squared returns, 2015
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(a) Returns

(b) Squared returns

FIGURE 15 Spatial distribution of returns and squared returns, 2016
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(a) Returns

(b) Squared returns

FIGURE 16 Spatial distribution of returns and squared returns, 2018
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