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Abstract

This paper empirically tests housing market efficiency in the spatial dimension by using the spatial

autoregressive conditional heteroskedastic (ARCH) and spatial quantile regression models. The tests were

conducted in terms of both housing returns and squared returns (volatility). The sale price data used is from

Cook County residential MLS for the years 2010-2016. The main findings are: housing returns are not

spatially correlated but squared returns are spatially correlated, and the spatial dependence of squared returns

seems to be stronger for higher squared return quantiles.

Keywords: Housing market, Market efficiency, Spatial dependence, Spatial volatility clustering, Spatial

quantile regression.

JEL Classification: G14, R23, R31, C21

*We are grateful to Osman Dogan, Geoffrey J. D. Hewings, Daniel P. McMillen and Suleyman Taspinar for helpful discussions

and many pertinent suggestions on an earlier version of the paper; though the remaining shortcomings are solely ours. We thank to

Illinois REALTORS for financial support to the Regional Economics Applications Laboratory that provided research funding for Jiyoung

Chae.
†Department of Economics, University of Illinois at Urbana-Champaign, Urbana, IL, USA, email: jchae3@illinois.edu.
‡Department of Economics, University of Illinois at Urbana-Champaign, Urbana, IL, USA, email: abera@illinois.edu.

1

mailto:jchae3@illinois.edu
mailto:abera@illinois.edu


1 Introduction

The efficient market hypothesis (EMH), popularly known as the random walk theory, implies that future

prices cannot be predicted by analyzing the past price movements because all historical information is fully

incorporated in the current prices (Fama, 1970). There has been a great deal of empirical research on the

EMH, but overall, the empirical evidence still remains inconclusive. Also, much of the research is focused on

the efficiency of the stock market (Sewell, 2011). The issue of housing market efficiency became especially

important after it was found that excess volatility of housing prices in OECD countries has been increasing

over time (Bracke, 2013; Claessens et al., 2011) and consequently housing markets are becoming less stable than

in the past. Nevertheless, there is a general consensus that the housing market is inefficient and thus predictable

with respect to some information. It has been frequently argued that the housing market inefficiency results from

its specific features, such as, high transaction costs, infrequent transactions, and a high degree of heterogeneity.

Thus information does not diffuse promptly in the market at a sufficient depth and consequently, the prices do

not adjust accordingly. While the test methods and the market studied may differ, previous empirical studies

generally find that housing returns (or price changes) exhibit positive serial correlation, implying predictability of

returns and, consequently housing market inefficiency (Gau, 1984; Linneman, 1986; Guntermann and Smith,

1987; Rayburn et al., 1987; Case and Shiller, 1989; Gyourko and Voith, 1992; Kuo, 1996; Gu, 2002; Schindler,

2013).

However, despite the substantial body of research investigating the market efficiency in the time series

context, very little has been written on spatial market efficiency even though an important and distinguishing

characteristic of real estate is its spatial dimension (Tirtiroglu, 1992). If markets are spatially efficient, then the

returns from neighborhood locations should not be informative in predicting the returns of other locations (Meen,

2012). On the other hand, if there is any indication of inefficiency in the housing markets, housing returns in

one area could contain useful and valuable information for predicting the returns of neighboring houses. The

literature on U.S. housing market suggests that the latter is the case. Tirtiroglu (1992) and Clapp and Tirtiroglu

(1994) find evidence of a spatial diffusion process within the Connecticut metropolitan housing markets, whereby

price changes of houses in a given sub-market affect changes in contiguous markets. Pollakowski and Ray (1997)

also examine the spatial interactions in housing prices across the U.S. census divisions and primary metropolitan

statistical areas (MSA). Using a vector autoregressive (VAR) approach, they demonstrate that the market is

inefficient and that contiguous regions transmit more influence than non-contiguous regions. Gupta and Miller

(2012) consider the issue of diffusion in eight Southern California MSAs and report substantial evidence of

temporal causality between them. Other studies have focused on analyzing both return and volatility spillovers
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in the U.S. housing market, for instance, see Miao et al. (2011) and Zhu et al. (2013). Nevertheless, research

on spatial relations in the U.S. regional housing market has been relatively sparse compared to that in the U.K.

The main objective of this paper is to test the spatial market efficiency in the U.S. housing market by

investigating the behavior of spatial dependence in housing returns, which is analogous to testing for dependence

in the time series context. In particular, we focus on nonlinear behavior of the spatial dependence in the returns

using their squared terms since, in empirical finance, even though there is lack of serial correlation in the level

of returns, the autocorrelation in the squared returns is found to be significant. In the time series literature, this

empirical fact led to the autoregressive conditional heteroskedastic (ARCH) model, proposed by Engle (1982)

and its various generalizations; for a survey of these models, see, Bera and Higgins (1993).

Note that squared returns are often used to proxy the actual volatility. Therefore high serial correlations

of squared returns indicates that volatility is serially correlated and therefore predictable. This strong serial

correlation in squared returns leads to the stylized fact of volatility clustering. The implication of such volatility

clustering is that volatility shocks today will affect the expectation of volatility in a future period. The absence

of linear autocorrelation but the presence of dependence in squared returns in the time series context naturally

suggests that the similar possibility in the spatial context needs to be investigated. In fact, Meen (1999) argue

that the spatial dependence in house price variations may arise due to four possible factors. The first is migration,

which means that if house prices in one area are high relative to the other regions, then households might

migrate to those regions, leading to equalization in the house prices. The second is equity transfer, which is

closely related to migration and suggests that households in regions with higher house prices would have greater

buying power, leading to higher prices in the other regions if these households would want to move. The third

is spatial arbitrage whereby if new information becomes available in one area, this information is transmitted

first to contiguous areas, thus allowing investors to acquire properties in lower priced regions, where higher

anticipated return on housing investment exist. Finally, the spatial patterns in determinants of prices can simply

induce spatial dependence in house prices, even if there is no spatial link. For example, two regions with similar

economic conditions can affect one another’s prices.

Accommodating this expectation, we investigate the possible spatial dependence in housing returns and

suggest that if there is any form of spatial dependence in the returns, regardless of whether it is linear or

nonlinear, the market is spatially inefficient and thus returns from the neighboring houses or neighboring areas

can be used to predict the returns and/or volatility at given locations. This argument is carried further, suggesting

that the market inefficiency would vary at different points of the distribution, i.e. at different quantiles. Our

expectation is based upon various findings in the theoretical as well as the empirical finance literature. For

example, Veronesi (1999) proposes a rational expectations equilibrium model and finds that prices overreact
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to bad news in good times and underreact to good news in bad times. Baur et al. (2012) argue that the state

dependence can be captured by the different quantiles of the conditional return distribution: upper (lower)

quantiles are associated with good (bad) states. Hence, they use quantile autoregressive model, constructed

under the framework of quantile regression (Koenker and Bassett, 1978), to study the predictability of stock

returns and find that lower quantiles exhibit positive dependence on past returns, while upper quantiles are

marked by negative dependence. Several other recent studies have also examined the relation between lagged

returns and current returns using quantile regression approaches (Chiang et al., 2010; Ma and Pohlman, 2008;

Tsai, 2012). This motivates us to employ the spatial quantile regression (SQR) to explore the spatial dependence

of housing returns and volatility across different quantiles.

In short, this study contributes to studies of spatial dependence in housing returns and volatility within the

framework of housing market efficiency by employing the spatial ARCH and SQR models. Most of the studies

in this branch has overwhelmingly focused on evaluating the spatial effects on the first two conditional moments

of return distributions, while ignoring other parts of the distributions. There have been several attempts on

the empirical analysis of SQR in the housing literature; however, most researchers focus on examining the

determinants of housing prices or land prices (Zietz et al., 2008; Kostov, 2009; Liao and Wang, 2012; McMillen,

2012).

For the empirical justification of our formulation, we focus on the Cook County’s housing market, the largest

and most diverse market in the Chicago metropolitan area, and use the residential property sales price data for the

period 2010-2016. Our study reveals a number of new insights into the spatial market efficiency of the housing

market. Specifically we find i) while housing returns are not correlated over space, squared returns, which

represent volatility, exhibit significant spatial dependence, i.e., spatial market inefficiency and therefore the

neighborhood housing returns contain information for spatial prediction, ii) the degree of inefficiency varies over

quantiles; the spatial dependence is conspicuously distinct from the lower quantiles to the higher quantiles with

a gradually increasing trend, iii) income is negatively associated with squared returns, implying that higher

household income leads to lower volatility of housing returns, and represents a gradual decrease with higher

quantiles.

The rest of this paper is organized as follows. Section 2 gives an overview of the EMH and related literature.

The fair game model and random walk model are defined and discussed to provide the background on testing the

spatial market efficiency. Section 3 provides the spatial market efficiency testing framework and Monte Carlo

study of the finite sample properties of the proposed test is presented in Section 4. The data are described in

Section 5, and the empirical results are reported in Section 6. Finally, in Section 7, we conclude the paper with

suggestions for future research.
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2 Theoretical Background

2.1 The Efficient Market Hypothesis (EMH)

Fama (1970) defines an efficient market as one in which prices always “fully reflect” all available information.

We will focus on two models of market efficiency, the Fair Game Model and the RandomWalk Model. It is

also necessary to specify what subset of available information is to be “fully reflected” in prices. The classic

taxonomy of information sets, due to Roberts (1967), and used by Fama (1970) consists of the following:

• Weak form efficiency: The information set includes only historical prices of returns.

• Semi-strong form efficiency: The information set includes all publicly available information.

• Strong form efficiency: The information set includes all publicly and privately available information.

In this study, we will be concerned only with the weak form efficiency since the objective of the paper is to

investigate the spatial dependence of housing returns on the neighboring values, which is analogous to examining

the dependence of stock returns from the time series of historical returns.

2.1.1 The Fair Game Model

The fair game model is based on the assumption that the conditions of market equilibrium can be stated in

terms of expected returns that are formed on the basis of the information set at time t, denoted by Φt. Formally,

E(Pi,t+1|Φt) = [1 + E(ri,t+1|Φt)]Pi,t, (1)

where Pi,t is the price of security i at time t and E(ri,t+1|Φt) is the next period expected return conditional on

Φt, reflecting the full utilization of the available information. The major empirical implication expressed in (1)

is that there is no trading system that achieves excess periodic returns above expectations. Let zi,t+1 denote

the excess return on security i, i.e.,

zi,t+1 = ri,t+1 − E(ri,t+1), (2)

then the sequence of excess returns is a fair game with respect to the information set Φt if and only if

E(zi,t+1|Φt) = 0, (3)
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which implies that on average the excess return is zero. Thus, an investor may experience large gains or losses

relative to the equilibrium expected return E(ri,t+1) in specific periods, but these average out to zero over time.

2.1.2 The RandomWalk Model

While the fair game theory assumes that all information is incorporated in expectations, the random walk

model is a somewhat extreme variant of the EMH. Here the successive price changes are independent and

identically distributed. Letting f(·) denote the density function, the random walk model can be expressed as

f(ri,t+1|Φt) = f(ri,t+1), (4)

which states that the conditional and marginal probability distributions of future returns are the same and the

function f(·) is invariant over time. It also implies that the serial covariance of returns is zero at all leads and

lags, and the expected return is equal to the unconditional mean of the distribution f(·) at all times. If ri,t denotes

the log return, i.e., ri,t = pi,t − pi,t−1, where pi,t ≡ log Pi,t, then the log price process, pi,t, can be written as

pi,t = µ + pi,t−1 + εi,t, (5)

where εi,t is an iid zero-mean random variable and µ denotes the drift parameter. Equation (5) is the most

common form of the random walk for stock prices used in the finance literature. Using (5), it is easy to see

that under the random walk framework, the condition (3) is satisfied, i.e.,

E(zi,t+1|Φt) = µ − µ = 0. (6)

However as mentioned earlier, the random walk model is more restrictive than the fair game model since

it requires successive returns to be independently identically distributed. Fama (1970) thus concludes that

empirical tests of the random walk model are more powerful in support of the EMH than tests of the fair game

model.
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2.2 A RandomWalk Test

The simplest model that can be used to test for the random walk in equation (5) is given by, after suppressing

the subscript i,

rt = β0 + β1rt−1 + εt, (7)

where rt is the log return, β0 and β1 are parameters to be estimated, and εt ∼ iid(0, σ2
ε). If the price follows a

random walk, then β1 = 0 and thus

pt = β0 + pt−1 + εt, (8)

the random walk with drift parameter β0.

Note that equation (7) has constant parameters and the error terms are assumed to follow the usual classical

assumptions. With financial markets, the assumption of constant variance may be inappropriate as empirical

evidence frequently finds that returns exhibit time-varying conditional variance (volatility). Studies by Park

and Bera (1987), Bera, Bubnys, et al. (1988), Bollerslev et al. (1988), Pagan and Schwert (1990), and Nelson

(1991) have identified the existence of a significant autoregressive structure in the conditional variance in

financial data, particularly in stock returns. Those findings had been extensively used in the literature as evidence

against the hypothesis of the standard conditional homoskedastic random walk model. Hence accepting the

null hypothesis H0 : β1 = 0 in (7) does not necessarily imply that the market is inefficient.

2.3 Time-Varying Volatility Specification

The ARCH models were first introduced by Engle (1982). An ARCH(q) model for the return series {rt} is

expressed as

rt = σtεt, εt ∼ iid(0, 1), (9)

σ2
t = α0 +

q∑
j=1

αjr2
t−j . (10)

Denoting Φt = σ(rt−1, rt−2, ...) as the sigma field generated by past information at time t, we have

Var(rt|Φt) = E(r2
t |Φt) = E(σ2

t ε2
t |Φt) = σ2

t E(ε2
t |rt−1, rt−2, ...) = σ2

t , (11)
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which by definition is function of history. Therefore, although rt is serially uncorrelated and thus cannot be

predicted using its history, which is the evidence of the EMH, the conditional variance of rt can be predicted.

Now we provide a statistical justification for the ARCH-type models. Consider the following random

coefficient version of equation (7) by assuming β1 = β̄1 + ηt with ηt ∼ iid(0, σ2
η) and being independent of

εt. Then

rt = β0 + β1rt−1 + εt

= β0 + (β̄1 + ηt)rt−1 + εt

= β0 + β̄1rt−1 + ηtrt−1 + εt. (12)

The first two conditional moments of rt, conditional on the past information Φt, are

E(rt|Φt) = β̄1rt−1, (13)

Var(rt|Φt) = σ2
ε + σ2

ηr2
t−1, (14)

assuming εt ∼ iid(0, σ2
ε).

Denoting σ2
ε = α0 and σ2

η = α1, the equation (14) becomes

Var(rt|Φt) = α0 + α1r2
t−1, (15)

which has the same form as (10) with q = 1, i.e., ARCH(1) process. If we further assume normality of ηt and εt,

then

rt|Φt ∼ N(0, σ2
t ), (16)

which is generally used to estimate the ARCH parameters by maximum likelihood method. The above simple

framework illustrates that a nonlinear ARCH model could be a manifestation of the time variation of the

parameter(s) of a linear model. In spatial data, heterogeneity over space is an ubiquitous phenomenon, thus

in spatial context, we can expect space varying nature of the underlying spatial models such as the spatial

autoregressive (SAR) model or spatial error model (SEM), leading to spatial ARCH (SARCH)-type models.
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3 Spatial Market Efficiency

3.1 Model Specification

From the previous section it follows that a test of spatial market efficiency can be formulated as a test based

on the excess return at location i conditional on its neighbors. With a similar notation, let zi denote the excess

return at location i and Φj 6=i denote location i’s j neighbors’ information set, then the spatial counterpart of (3) is

E(zi|Φj 6=i) = 0. (17)

Then a natural extension of the simple AR model given in (7) to the spatial context is the following SAR

model.

ri = ρ
n∑

j 6=i

wijrj + εi, (18)

where wij is the ij-th element of the spatial weight matrix W . In (18), we have put β0 = 0 since without loss of

generality the population mean of the excess return ri can be assumed to be zero. The spatial weight matrix

specifies the structure of neighborhood relationships, and different forms of W can be employed, for example,

one based on contiguity, inverse distance, k-nearest neighbors, or some other scheme. In our application, the

simplest and one of the most commonly used contiguity matrix, queen contiguity, is used.1 Here, wij is equal to

one when observations i and j share a common border or vertex, and a zero value, otherwise. By construction,

the diagonal elements of the matrix, wii are set to zero. Also, for ease of interpretation, the matrix is defined

in the row-standardized form, in which the row elements sum to one. The distinguishing feature of the SAR

process rests on the specification of the expected returns at location i as a function of the returns of its neighbors

as specified by the W matrix, and thus the spatial market efficiency can be tested by testing the null hypothesis

H0 : ρ = 0, in (18).

3.2 Spatial ARCH (SARCH) Specification

We should note that accepting the null hypothesis that β1 = 0 in (7) does not mean that the market is efficient

as the conditional variance can depend on the past information. For spatial data we can expect the presence

of conditional heteroskedasticity depending on neighborhood observations. For a simple illustration of this

1Distance-based weight matrices (e.g., fixed distance band, inverse distance), have been also considered in empirical analysis for the

robustness check in Section 6. The major conclusion still holds.
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phenomenon, using our Cook County data which will be described in detail in Section 5, in Figure 1, we plot the

quantile maps for returns and squared returns at census tract level. The left figure shades census tracts according

to five bins of the returns, with darker shading corresponding to higher returns. Similarly, the right figure shades

census tracts according to five bins of the squared returns, with darker shading corresponding to higher squared

returns, representing higher volatility. The comparison of the two figures provides evidence that the level of

returns appear to be random and not spatially correlated, while squared returns are spatially correlated especially

on the south region of Cook County, and the southeast and west regions of the City of Chicago.

To address this concern for the presence of SARCH, we consider the following random coefficient version

of SAR model (18) by assuming ρ = ρ̄ + ηi, with ηi ∼ iid(0, σ2
η), and distributed independently of εi,

ri = ρ
n∑

j 6=i

wijrj + εi, εi ∼ iid(0, σ2
ε)

= (ρ̄ + ηi)
n∑

j 6=i

wijrj + εi

= ρ̄
n∑

j 6=i

wijrj + ηi

n∑
j 6=i

wijrj + εi. (19)

Then the first two moments of ri, conditional on the neighborhood information Φj 6=i, are given by

E(ri|Φj 6=i) = ρ̄
n∑

j 6=i

wijrj , (20)

Var(ri|Φj 6=i) = σ2
ε + σ2

η

 n∑
j 6=i

wijrj

2

= σ2
ε + σ2

ηN2
i , (21)

where Ni =
∑n

j 6=i wijrj can be viewed as the average neighborhood value for the location i, i = 1, ..., n.

Bera and Simlai (2005) formulated the SARCH specification (21) starting from an SAR model and using the

information matrix (IM) test principle of White (1982).

Denoting σ2
ε = α0 and σ2

η = α1, (21) becomes

Var(ri|Φj 6=i) = α0 + α1N2
i , (22)

which can be taken as spatial counterpart of (15). In our application, an approximate version of (22) will be

used, namely,

Var(ri|Φj 6=i) = E(r2
i |Φj 6=i) = α0 + α1

n∑
j 6=i

wijr2
j . (23)
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City of Chicago

(a) Returns

City of Chicago

(b) Squared returns

FIGURE 1 Quantile maps for returns and squared returns
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Thus, while the conditional variance in the time series context is a function of the squares of past observations,

in the spatial context it is described by the squares of neighboring observations. The model (23) can be interpreted

as a SAR model for squared returns, and the parameters α0 and α1 can be estimated by using r2
i and a spatially

lagged variable
∑n

j 6=i wijr2
j , and conducting a SAR-type regression.

3.3 Spatial Quantile Specification

While the above approaches provide parsimonious solutions to investigating the spatial market efficiency

by analyzing the spatial dependence patterns in returns and squared returns via the regressions (18) and (23),

they do not provide detailed information about the distribution.

Quantile regression (QR) as introduced by Koenker and Bassett (1978) has become a popular robust alternative

to extract distributional information. Just as a classical linear regression estimates the overall conditional mean of

the dependent variable, QR provides a way to estimate the conditional mean at different quantiles. Therefore,

it is well suited to analyzing spatial data in particular situations where the distribution of the dependent variable

is highly skewed at certain locations.

QR was incorporated into the SAR model by Kostov (2009) called spatial quantile regression (SQR) model.

This model allows the spatial lag parameters ρ and α1 in equations (18) and (23) to be dependent on each quantile

τ , 0 < τ < 1, thus allowing for a different degree of spatial dependence at different points of the response

distribution. For example, strong spatial dependence may only exist at certain values of τ . At quantile τ , we will

use y(τ) to represent the dependent variable, and λ(τ) to represent the spatial lag parameters ρ and α1 in (18)

and (23), respectively. Incorporating potential independent variables X related to housing returns, the spatial

QR (SQR) model can be written compactly in a matrix form as:

y(τ) = λ(τ)Wy + Xβ(τ) + u, (24)

where y(τ) is the dependent variable (returns or squared returns) in the τ th quantile, W the n × n spatial weight

matrix, X the n × k matrix of independent variables, β(τ) quantile specific parameters of X and u the vector

of error terms.

Clearly the spatially lagged variable Wy present on the right-hand side of (24) is an endogenous variable,

thus the conventional QR approach will lead to inconsistent estimator. Two methods have been suggested for

consistent estimation by taking account of the endogeneity in any QR set-up: (i) the two-stage quantile regression

(2SQR) suggested by Kim and Muller (2004); (ii) the instrumental variable quantile regression (IVQR) proposed

by Chernozhukov and Hansen (2006). IVQR was then further extended to include a spatial lag effect (Kostov,
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2009; Su and Yang, 2011) and the spatially lagged independent variables are considered as instruments. Zietz

et al. (2008), Liao and Wang (2012), McMillen (2012), Zhang and Leonard (2014), and Zhang (2016) apply

2SQR approach to their studies of house prices. Kostov (2009) compares 2SQR and IVQR and considers an

application to agricultural land prices.

2SQR resembles the two-stage least squares (2SLS) estimator of Kelejian and Prucha (1998) and IVQR is

asymptotically equivalent to the generalized method of moments (GMM). The IVQR method can deal with

weak instrument and may have better finite sample properties. On the other hand, the 2SQR procedure has

computational efficiency as it requires only two consecutive quantile regressions for each quantile of interest

whereas the IVQR method employed in Su and Yang (2011) and Kostov (2009) conducts a search over a range

of values for the spatial dependence parameter and thus requires a separate quantile regression to be estimated

for each value of the range. From a practical implementation point of view, we employ the 2SQR method for

estimation which involves the following two steps. In the first step, for a given τ , we run a QR of Wy on the

exogenous variables WX and X , and the predicted Ŵy is obtained. Then in the second step, we estimate the

model (24) by conducting another QR for the same value of τ , by regressing y on Ŵy and X , and obtain λ̂(τ)

and β̂(τ). This procedure is repeated for other quantiles τ ∈ (0, 1).

4 Monte Carlo Simulation

In this section, we present small simulation results to investigate the finite sample performance of 2SQR of

the proposed model (23) in the quantile setting. In essence, we follow the simulation design of Su and Yang

(2011) with a modification on the dependent variable. The specific DGP employed in the simulations has the

following form:

y2
i = λ(vi)

n∑
i=1

wijy2
j + β(vi)′xi, (25)

where xi = (1, x0
i ), x0

i ∼ iidN(0, 1), and

λ(vi) = 0.5 + 0.1F −1(vi) (26)

β(vi) = (2.0, 1.0)′ + (0.5, 0.5)′F −1(vi), (27)

with vi ∼ iidU(0, 1) and F (·) is chosen to be standard normal. Under these specifications, the values for λ(τ)

and β(τ)′ = {β1(τ), β2(τ)} under different τ are summarized in Table 1. The spatial weight matrix is generated

according to queen contiguity criteria on regular m × m grids, leading to a sample size of n = m2. This matrix
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is row-normalized so that each row sums to unity. The sample sizes used are 100, 400, and 900. Each set of

simulation results is based on 1,000 Monte Carlo replications.

TABLE 1 True quantile parameters used in simulations

τ λ(τ) β1(τ) β2(τ)

0.25 0.4326 1.6628 0.6628

0.50 0.5000 2.0000 1.0000

0.75 0.5674 2.3372 1.3372

Table 2 presents the Monte Carlo bias together with the standard deviation (StDev) and the root mean squared

errors (RMSE) for the 2SQR estimators (Panel A) of the spatial parameter λ(τ) and the slope parameter β2(τ)

at the 0.25th, 0.50th, and the 0.75th quantile. For comparison purpose, we also report the results of IVQR

estimators in Panel B.

TABLE 2 Empirical bias, standard deviation (StDev), and RMSE for estimators of λ(τ) and β2(τ)

λ(τ) β2(τ)

τ n Bias StDev RMSE Bias StDev RMSE

Panel A: 2SQR

0.25 100 0.0297 0.3199 0.3213 0.0732 0.1133 0.1349

400 0.0319 0.1026 0.1075 0.0738 0.0562 0.0928

900 0.0377 0.0638 0.0741 0.0712 0.0351 0.0794

0.50 100 −0.0130 0.1947 0.1951 −0.0076 0.1094 0.1096

400 −0.0077 0.0830 0.0834 0.0012 0.0545 0.0545

900 −0.0047 0.0560 0.0562 −0.0001 0.0337 0.0337

0.75 100 −0.0607 0.2050 0.2138 −0.0869 0.1140 0.1434

400 −0.0537 0.0931 0.1075 −0.0744 0.0581 0.0944

900 −0.0466 0.0596 0.0757 −0.0747 0.0385 0.0840

Panel B: IVQR

0.25 100 −0.0109 0.2274 0.2277 0.0668 0.1020 0.1219

400 0.0049 0.0780 0.0782 0.0582 0.0472 0.0749

900 0.0100 0.0514 0.0524 0.0540 0.0356 0.0646

0.50 100 −0.0133 0.1813 0.1818 −0.0087 0.0970 0.0974

400 −0.0057 0.0662 0.0665 −0.0001 0.0416 0.0416

900 −0.0004 0.0394 0.0394 −0.0018 0.0265 0.0265

0.75 100 −0.0227 0.2047 0.2059 −0.0790 0.1065 0.1326

400 −0.0152 0.0802 0.0816 −0.0591 0.0528 0.0793

900 −0.0129 0.0503 0.0519 −0.0571 0.0379 0.0685
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The results indicate that both estimators behave quite well in general, although a slight edge may go to the

IVQR estimator. Also, both standard deviation and RMSE decline across the estimators as the sample size

increases, and the magnitude of decrease is generally consistent with the
√

n-asymptotics. As noted in Section 3,

the 2SQR is by any means computationally simpler than the IVQR for spatial lag type of models. Given that it

has similar properties to the IVQR estimator and the additional computational costs associated with the IVQR

estimator may not bring in sufficient advantages to justify their usage over the 2SQR estimator, the 2SQR

method is used in empirical analysis.

5 Data

This study was carried out in the Cook County, the largest and most diverse county in the Chicago metropolitan

area, consisting of more than 60 percent of the housing units in the area. Several factors were considered in

selecting appropriate spatial units for the study to represent neighborhoods. These included homogeneity in

terms of socioeconomic status within the spatial unit; large enough population size to minimize the problem

with small numbers; data availability; acceptability by urban planners and policymakers; and stability of the

boundaries over time for future analyses. Based on these criteria, census tracts were chosen as the spatial units for

the analysis, mainly due to their homogeneity with respect to socioeconomic and demographic characteristics.2

Furthermore, most census data are reported at this level of geography, which allowed us to obtain neighborhood

characteristics for our independent variables, and the boundaries of the census tracts follow permanent and easily

recognizable physical features.

There are 1,318 census tracts in Cook County, which are the reasonable number of spatial units - neither too

big nor too small. For ease of interpretation, we also use Public Use Microdata Areas (PUMA) as reference

of local housing submarkets.3 There are 33 PUMAs in Cook County, 19 of which comprise city communities;

the remaining 14 cover the suburban communities. Figure 2 shows a map of Cook County with the 1,318 census

tracts and the 33 different PUMAs. The census tracts are outlined with light blue lines, and the PUMAs are

outlined in solid black, and their number are labeled on the map using black text. To take a broader view of

city versus suburbs, we outline the City of Chicago in a solid red line.

This study employs the residential property sales prices from multiple listing services (MLS) in Cook

County for the period 2010-2016, which were accessed from the Illinois REALTORS®. All sales price data

were geocoded first and aggregated by the census tract level, and then used to compute the annual median

2Census tracts are small, relatively stable spatial units with population ranging between 2,500 and 8,000 with an average of approximately

4,000.
3PUMAs are geographic areas defined for statistical use by the U.S. Census Bureau and constructed from census tracts.
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Cook County Suburbs

Number Submarket

3401 Palatine/Barrington

3407 Melrose Park/Maywood

3408 Oak Park/Cicero

3409 LaGrange/Burbank

3410 Orland Park/Lemont

3411 Oak Lawn/BlueIsland

3412 Oak Forest/Country Club Hills

3413 Calumet City/Harvey

3414 Chicago Heights/Park Forest

3415 Arlington Heights/Wheeling

3416 Winnetka/Northbrook

3417 Hoffman Estates/Streamwood

3418 Schaumburg

3419 Mount Prospect/Elk Grove Village

3420 Park Ridge/Des Plaines

3421 Evanston/Skokie

3422 Elmwood Park/Franklin Park

City of Chicago

Number Submarket

3501 Chicago–Uptown/Rogers Park

3502 Chicago–Lake View/Lincoln Park

3503 Chicago–Lincoln Square/North Center

3504 Chicago–Irving Park/Albany Park

3520 Chicago–Portage Park/Jefferson Park

3521 Chicago–Austin/Belmont Cragin

3522 Chicago–Logan Square/Avondale

3523 Chicago–Humboldt Park/Garfield Park

3524 Chicago–West Town/Near West Side

3525 Chicago–Loop and Surrounding

3526 Chicago–Bridgeport/Brighton Park

3527 Chicago–Gage Park/West Lawn

3528 Chicago–Englewood/Greater Grand Crossing

3529 Chicago–Bronzeville/Hyde Park

3530 Chicago–Beverly/Morgan Park

3531 Chicago–Auburn Gresham/Chatham

3532 Chicago–South Chicago/West Pullman

City of Chicago

FIGURE 2 Map of 1,318 census tracts for 33 PUMAs in Cook County

FIGURE 2 Data Source: U.S. Census Bureau, Institute for Housing Studies, OpenStreetMap.

Note: The listed numbers refer to the codes of the PUMAs upon which the listed housing submarkets are based.
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prices for each tract.4 There has been considerable debate over the merits of using median house price versus

repeat sales price, which measures sales prices for the identical property at different points in time, provided that

property characteristics do not change between the two sales. This study uses the median price method because

the repeat sales method is restricted to properties that have been sold more than once, which may lead to too

small estimation samples that are not able to reflect the pure price change of the entire housing market. As the

median price includes single sales that can make up a large proportion of total sales, it can be considered more

representative of the housing market. Thus the median prices are used to calculate annual housing returns that

are obtained from the first difference of log annual median house prices, i.e., ri,t = log(Pi,t) − log(Pi,t−1),

where at census tract i, Pi,t and Pi,t−1 are, respectively, the median prices at time t and t − 1, and ri,t is the

corresponding log annual return.5 In order to control for possible factors related to the housing returns, typical

hedonic pricing variables are also considered; these variables represent structural, locational, and neighborhood

attributes of housing. Two structural variables are considered and constructed as averages: number of bathrooms

and floor area. For the locational variable, distance from each census tract to the central business district (CBD)

is calculated. For the neighborhood attributes, the American Community Survey (ACS) 5-year data from the

U.S. Census Bureau for the period 2010-2016 are used to obtain the socioeconomic variables for each tract, such

as unemployment rate, percentage of African Americans, percentage of population with a bachelor’s degree, and

median income. Table 3 reports summary statistics of the returns and squared returns along with the independent

variables, for each year during the study period from 2010 to 2016.

TABLE 3 Descriptive statistics

Year/sample size 2010 (n = 1246) 2011 (n = 1279) 2012 (n = 1279) 2013 (n = 1284) 2014 (n = 1279) 2015 (n = 1292) 2016 (n = 1279)

Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev

Returns −0.06 0.37 −0.13 0.38 −0.04 0.39 0.13 0.35 0.12 0.30 0.10 0.34 0.10 0.32

Squared returns 0.14 0.44 0.16 0.45 0.15 0.84 0.14 0.78 0.10 0.27 0.12 0.38 0.11 0.30

Bathroom 1.74 0.37 1.76 0.38 1.75 0.36 1.75 0.36 1.78 0.37 1.79 0.36 1.81 0.37

Floor area 6.46 0.50 6.91 0.37 7.01 0.31 7.05 0.30 7.08 0.30 7.10 0.30 7.12 0.28

CBD distance 10.11 7.12 10.02 7.10 10.01 7.10 9.96 7.12 10.00 7.11 9.97 7.10 10.02 7.11

Unemployment 11.13 7.85 12.03 7.85 13.02 8.36 13.80 8.81 13.34 8.89 12.42 8.71 11.13 8.46

African 28.83 37.63 28.82 37.36 28.97 37.34 28.58 37.06 28.14 36.60 28.61 36.82 28.19 36.38

Bachelor 19.58 12.33 19.83 12.58 20.01 12.70 20.07 12.79 20.49 12.92 20.56 12.93 20.97 12.83

Income 10.85 0.47 10.85 0.47 10.84 0.48 10.83 0.49 10.84 0.49 10.84 0.51 10.88 0.51

Note: This table describes mean and standard deviation (StDev) for each year. Floor area (in squared footage), CBD distance (in miles), and median income

are expressed in logarithmic term, while Unemployment, African, and Bachelor are expressed in percentage term. To address likely data entry errors, observations

with unrealistic or missing values are eliminated, leading to unequal sample sizes across years.

4ArcGIS software was used to conduct this task.
5No additional components that are often included in computing the total return such as interest and dividends in the financial market

data are considered in this analysis as they are not applicable in our context.
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Given that we have access to the seven years of the data, a panel study would appear to be the most appropriate

and advantageous approach, but we estimate the model as cross-sections as quantile regression estimation for

spatial panel models has not been studied in existing literature, with the exception of Dai et al. (2019) who

recently investigate the IVQR estimation of general spatial autoregressive panel data model with fixed effects.

6 Empirical Analysis

We first estimate the housing return model (18) including the potential independent variables listed in Table 3

by the method of two-stage least squares (2SLS) with robust standard errors, separately for each of the seven

cross-sections. The 2SLS estimation is implemented following Kelejian and Prucha (1998) by using spatially

lagged independent variables as instruments for the spatially lagged dependent variable. The results are reported

in Table 4.

TABLE 4 Robust 2SLS estimation results based on queen contiguity (dependent variable: returns)

2010 2011 2012 2013 2014 2015 2016

W y 0.755*** 0.108 0.053 0.182 0.494** −0.215 0.023

(0.228) (0.201) (0.295) (0.230) (0.243) (0.237) (0.402)

Constant −0.414 −0.747 −0.457 1.785*** 0.301 0.759** 0.475

(0.598) (0.482) (0.437) (0.594) (0.381) (0.373) (0.383)

Bathroom 0.094** 0.191*** 0.116*** 0.147*** 0.040 0.112*** 0.084**

(0.040) (0.038) (0.044) (0.046) (0.037) (0.040) (0.039)

Floor area 0.057** 0.060 0.019 −0.076 −0.016 0.039 0.039

(0.024) (0.039) (0.047) (0.055) (0.042) (0.047) (0.050)

CBD distance 0.000 −0.003** −0.003** 0.002** −0.002* −0.001 0.000

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Unemployment 0.001 0.002 0.002 −0.004 −0.004** −0.002 0.001

(0.003) (0.003) (0.003) (0.002) (0.002) (0.003) (0.003)

Black 0.001 0.000 0.000 0.000 0.000 0.000 0.000

(0.001) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001)

Bachelor 0.000 −0.001 0.000 0.000 −0.003*** −0.003** −0.002

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Income −0.013 −0.009 0.008 −0.126*** −0.006 −0.095*** −0.073**

(0.055) (0.047) (0.040) (0.046) (0.029) (0.036) (0.034)

n 1246 1279 1279 1284 1279 1292 1279

Pseudo R2 0.055 0.059 0.028 0.037 0.032 0.033 0.047

Note: Standard errors in parentheses. Pseudo R2 is computed as the squared correlation between observed and

predicted values of the dependent variable. ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1

As mentioned in Section 3, a queen contiguity spatial weight matrix is used since many census tracts form
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a relatively uniform rectilinear tessellation across the region. In order to determine the significance of the model,

in fact pseudo-significance, a pseudo R2 is used since the traditional R2 is not a good measure of fit for the

spatial lag models. This pseudo R2 is computed as the square of the correlation between observed and predicted

values of the dependent variable (Anselin, 1995).

It can be seen from Table 4 that the estimated coefficients of spatial lag term (Wy) are not consistent across

years in terms of the sign and magnitude and not statistically significant in most years, with two exceptions

found in 2010 where the effects of the financial crisis led to significant negative returns for most of tracts and

2014 where housing prices started recovering. There are a few significant independent variables, but they do not

play an important role in explaining the housing returns, with pseudo R2 all below 0.1. As the 2SLS estimates do

not provide useful information about the spatial dependence, the discussion now proceeds to the results from

the 2SQR model to verify whether there is statistical variation in the coefficients of the spatial lag term across

different quantiles.

TABLE 5 2SQR estimation results based on queen contiguity (dependent variable: returns)

Quantiles (τ )

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

W y −0.376 −0.742 −0.153 −0.045 −0.460 −0.288 −0.074 −0.078 0.233

(0.823) (0.625) (0.535) (0.476) (0.389) (0.351) (0.289) (0.332) (0.294)

Constant −0.663 −0.409 −0.249 0.042 0.493* 0.916*** 1.222*** 1.865*** 2.393***

(0.820) (0.447) (0.288) (0.289) (0.291) (0.292) (0.382) (0.579) (0.790)

Bathroom 0.061 0.059* 0.055* 0.068** 0.080*** 0.095*** 0.124*** 0.176*** 0.267***

(0.063) (0.036) (0.033) (0.031) (0.027) (0.024) (0.033) (0.049) (0.064)

Floor area −0.031 −0.034 −0.007 −0.015 −0.008 0.016 0.028 0.058 0.050

(0.076) (0.037) (0.033) (0.034) (0.035) (0.033) (0.036) (0.049) (0.071)

CBD distance 0.006*** 0.002* 0.001 0.000 0.000 −0.001 −0.001 −0.002* −0.004**

(0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002)

Unemployment −0.004 −0.004 −0.003 −0.002 −0.001 −0.001 0.000 0.001 0.000

(0.004) (0.003) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.005)

African −0.003** −0.001* 0.000 0.000 0.000 0.001 0.001** 0.001** 0.001

(0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001)

Bachelor −0.003 −0.004** −0.002* −0.002 −0.004*** −0.003*** −0.002** −0.002 −0.003*

(0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002)

Income 0.061 0.056 0.025 0.004 −0.034 −0.089*** −0.131*** −0.212*** −0.258***

(0.070) (0.041) (0.028) (0.027) (0.028) (0.028) (0.035) (0.047) (0.072)

n 1,292 1,292 1,292 1,292 1,292 1,292 1,292 1,292 1,292

Pseudo R2 0.006 0.005 0.000 0.037 0.005 0.022 0.033 0.031 0.042

Note: Standard errors in parentheses. The standard errors for quantile regression are obtained through 500 bootstrap replications. Pseudo

R2 is computed as the squared correlation between observed and predicted values of the dependent variable. Results are based on 2015

data. ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1
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The results are presented in Table 5 in which the numbers in parentheses are the bootstrapping standard errors,

that are obtained through 500 bootstrap replications. Due to space limitations, we report only on results from the

year 2015. Additional results, consistent with those reported, are available from the authors. According to the

estimation results, defining the relationship between the typical hedonic pricing variables and housing returns

is not improved by using 2SQR, as indicated by low pseudo R2 for all quantiles. For some variables the 2SQR

results reveal that their association with the housing returns is not stable across quantiles. For other variables that

are not statistically significant in the ML and 2SLS estimations, the 2SQR confirms them to remain insignificant

over different quantiles. Finally, the estimates of the spatial lag parameter are not statistically significant and

substantially vary in magnitude across quantiles, indicating that housing returns are not correlated over space.

These findings support the conjecture that the housing market is spatially efficient as long as we consider only

the returns.

However, as noted earlier, the absence of spatial linear dependence in returns does not preclude the presence of

nonlinear relationship. In Section 3, Panel (b) of Figure 1 clearly identified the spatial clustering for the squared

returns. To investigate and quantify the possible presence of nonlinear dependence, we now turn to the model

(23) and repeat our exercises using the squared returns, and the results are provided in Table 6. First, and most

notably, the spatial coefficients are now highly significant for all years, yielding a considerable improvement in

the model fit. This result corroborates the visual conclusions from Panel (b) of Figure 1. Hence, we can conclude

that although the returns are spatially uncorrelated, there is significant spatial dependence in the squared returns,

indicating that highly volatile locations tend to be surrounded by similar volatile neighborhoods. The presence

of spatial dependence in squared returns provides evidence that the housing market is spatially inefficient.

In contrast to the highly significant spatially lagged squared returns, the other independent variables are not

significant, with the exception of the floor area and income variables.6 In particular, the income variable is

highly negatively correlated with the squared returns, indicating that higher household income leads to lower

volatility of housing returns. This finding is largely in line with those of Hartman-Glaser and Mann (2017), who

measure income and housing return volatility at the zip code level within the largest metropolitan statistical areas

(MSAs) in the U.S. and conclude that lower income households face higher volatility of housing returns. They

argue that this is because collateral constraints are tighter for lower-income areas, causing higher housing return

volatility. More specifically, the collateral constraint makes households unable to fully smooth consumption, and

thus their marginal rate of substitution (MRS) between housing and other consumption fluctuates with income

6It is noteworthy that the coefficients in Table 6 do not directly reflect the marginal effects of the corresponding independent variables

on the dependent variable (LeSage and Pace, 2010), we thus need to report the direct, indirect, and total effects of the independent

variables. However, the focus of this study is on the spatial dependence parameter and not on the marginal effects of the independent

variables.
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TABLE 6 Robust 2SLS estimation results based on queen contiguity (dependent variable: squared returns)

2010 2011 2012 2013 2014 2015 2016

W y 0.587*** 0.400** 0.498** 0.485*** 0.416*** 0.579*** 0.441**

(0.181) (0.156) (0.198) (0.132) (0.138) (0.150) (0.180)

Constant 1.310** 1.666*** 0.179 1.781*** 0.630** 0.419 0.297

(0.544) (0.636) (0.450) (0.523) (0.285) (0.319) (0.302)

Bathroom 0.023 0.066* −0.030 0.029 0.025 0.009 −0.014

(0.040) (0.037) (0.046) (0.046) (0.028) (0.029) (0.028)

Floor area 0.019 −0.034 0.097** −0.050 0.006 0.079** 0.120***

(0.020) (0.045) (0.049) (0.052) (0.028) (0.040) (0.040)

CBD distance 0.000 0.000 −0.001 0.001 −0.001 −0.001 −0.002**

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Unemployment −0.002 0.001 0.002 −0.001 −0.001 0.000 0.001

(0.003) (0.003) (0.004) (0.002) (0.001) (0.002) (0.002)

Black 0.000 0.001 0.000 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000)

Bachelor 0.000 0.001 0.001 0.001 −0.001 0.000 0.000

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Income −0.131** −0.140** −0.073 −0.134*** −0.058** −0.087*** −0.099***

(0.053) (0.055) (0.049) (0.044) (0.024) (0.032) (0.030)

n 1246 1279 1279 1284 1279 1292 1279

Pseudo R2 0.108 0.059 0.010 0.012 0.086 0.157 0.231

Note: Standard errors in parentheses. Pseudo R2 is computed as the squared correlation between observed and

predicted values of the dependent variable. ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1

shocks. This in turn leads to endogenous volatility in the housing returns provided that the housing supply is not

perfectly elastic. Furthermore, this volatility is greater especially for lower income households because even

relatively small income shocks can have significant effects on their financial stability.

Figure 3 demonstrates these findings visually with quantile maps of the squared returns and income. Note

that darker shading in Panel (a) of Figure 3 corresponds to higher volatility and brighter shading of Panel (b)

of Figure 3 corresponds to lower income. By comparing the Panels (a) and (b), we observe that high-volatility

areas are low-income areas and low-volatility areas are high-income areas. More specifically, most highly

volatile areas on the west and south parts of Chicago (PUMAs 3523, 3528, and 3529, as in Figure 2 , namely

Humboldt Park, Garfield Park, Englewood, Greater Grand Crossing, Bronzeville, and Hyde Park, are on the

lowest end of the income spectrum. These areas are also known as predominately minority (African American

and Hispanic) neighborhoods and considered one of the most segregated metro areas in the U.S. By contrast

on the lower end of the income spectrum, in places like north side neighborhoods of the city (PUMAs 3502

and 3525) - Lake View, Lincoln Park, and Loop are much less volatile.
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City of Chicago

(a) Squared returns

City of Chicago

(b) Income (in log)

FIGURE 3 Quantile maps for squared returns and income (in log)
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City of Chicago

(a) Squared returns

City of Chicago

(b) Predicted (within sample) squared returns

FIGURE 4 Quantile maps for squared returns and predicted squared returns

2
3



Using the 2SLS estimation results, the predicted values of the square returns are calculated and are displayed

in Figure 4, Panel (b). For easy comparison, we reproduce quantile map of squared returns (Figure 1, Panel

(b)) in Figure 4, Panel (a). Comparing Panels (a) and (b) in Figure 4, we note that the clustering patterns of the

squared returns are well captured by the predictions.

Now we estimate 2SQR to portray the different effects of the spatially lagged dependent variable and

independent variables at various points of the conditional distribution of squared returns. As presented for the

return model, here we only report results for 2015 (results for other years also available from the authors). The

results of the 2SQR with bootstrapped standard errors are presented in Table 7.

TABLE 7 2SQR estimation results based on queen contiguity (dependent variable: squared returns)

Quantiles (τ )

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

W y 0.050** 0.072** 0.151*** 0.159*** 0.223*** 0.331*** 0.385*** 0.515*** 0.901***

(0.025) (0.035) (0.049) (0.052) (0.067) (0.087) (0.107) (0.141) (0.263)

Constant −0.002 0.004 0.019 0.056 0.086 0.150* 0.226 0.583** 0.879

(0.004) (0.011) (0.023) (0.036) (0.055) (0.087) (0.157) (0.294) (0.546)

Bathroom 0.000 0.000 0.002 0.006** 0.010** 0.014** 0.015 0.054** 0.060

(0.000) (0.001) (0.002) (0.003) (0.004) (0.007) (0.011) (0.023) (0.038)

Floor area 0.000 0.000 0.000 0.000 0.001 0.006 0.012 0.021 0.050

(0.000) (0.001) (0.002) (0.003) (0.005) (0.007) (0.011) (0.020) (0.043)

CBD distance 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 −0.002

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001)

Unemployment 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.002

(0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.002) (0.005)

African 0.000 0.000 0.000 0.000* 0.000* 0.000 0.000 0.001 0.001

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.002)

Bachelor 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001** 0.001

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001)

Income 0.000 0.000 −0.002 −0.006 −0.009* −0.019** −0.031** −0.076*** −0.119**

(0.000) (0.001) (0.002) (0.004) (0.005) (0.009) (0.015) (0.028) (0.052)

n 1,292 1,292 1,292 1,292 1,292 1,292 1,292 1,292 1,292

Pseudo R2 0.130 0.135 0.135 0.144 0.146 0.146 0.149 0.152 0.154

Note: Standard errors in parentheses. The standard errors for quantile regression are obtained through 500 bootstrap replications. Pseudo

R2 is computed as the squared correlation between observed and predicted values of the dependent variable. Results are based on 2015

data. ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1

According to the results, the estimated coefficients for the spatial lag term are all significantly positive at

all quantiles, which is in compliance with the 2SLS estimations presented in Table 6. We also find that the

coefficients at upper quantiles are systematically larger than those at the lower quantiles, which indicates that

the influence of spatially lagged squared returns increases with quantiles. For the income variable, the general
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pattern seems to be that at upper quantiles the influence of income on the squared returns is significantly negative

with a downward trend as the quantile increases. On the other hand, the coefficients of other independent

variables are mostly insignificant with irregular patterns across different quantiles. The floor area which was

found to be significant in the 2SLS estimations (column (6) in Table 6) becomes insignificant at all quantiles.

In order to better see the tendency of the coefficients change of our interest across quantiles, two subgraphs

are provided to support the illustration of coefficient estimates in Figure 5 according to the estimation results

of 2SQR in Table 7, separately for the spatial lag term and income variable. So as to clearly show the change

tendency of coefficient, each subgraph exhibits 2SQR coefficient estimates and their 95% confidence intervals

at 0.05–0.95 quantiles with step size 0.05. For comparison purpose, the 2SLS coefficient estimates with robust

standard errors (from Table 6) and the bounds of their corresponding 95% confidence intervals are also included,

which are obviously invariant across quantiles at 0.579 and -0.087 respectively.

(a) Spatial lag term (b) Income

FIGURE 5 2SLS and 2SQR coefficient estimates by quantile

As noted in Table 7, Panel (a) in Figure 5 reveals that there is substantial heterogeneity of spatial dependence

across quantiles; in particular, there is a clear upward trend of the quantile effects of the spatial dependence.

This finding suggests that the housing returns of nearby areas more positively influence those of high-volatility

areas than low-volatility areas. On the other hand, Panel (b) in Figure 5 shows that the coefficients on income are

negative, with a clear downward trend, suggesting that the decrease of household income leads to more volatile

housing returns particularly in areas with higher housing returns. Looking at trends of both coefficients for
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other years in Figure 6, despite some variation across years, the overall patterns look similar, with the spatial lag

term showing a rising trend and the income showing a declining trend across quantiles. Hence, we can conclude

that the patterns observed in 2015 can be generalized to other time periods.

(a) Spatial lag term (b) Income

FIGURE 6 2SQR coefficient estimates by quantile

Such increasing or decreasing spatial patterns across conditional quantiles warrants more research. These

patterns might be common in other housing markets, or might be very specific to Cook County. We should note

that the Chicago region has a long history of segregation, both racially and socioeconomically. White residents

are predominately found in neighborhoods on the North side and surrounding downtown; Black residents in

South and West side neighborhoods, and Latin residents in Northwest and Southwest neighborhoods. Even after

many nondiscriminatory policies and practices have been applied, the racial segregation has been intensifying

partially because of the prevalence of discrimination throughout the housing industry. A recent study by the

Institute for Race Research and Public Policy at the University of Illinois at Chicago, “ATale of Three Cities:

the State of Racial justice in Chicago Report,” shows that, due to persistent segregation in Chicago, there are

significant economic inequalities among Black, White and Latin residents, even when controlling for educational

levels.7

We also explore whether the results are changed when ruling out insignificant independence variables and

only keeping the spatial lag term and income variable. The estimation results of the parsimonious model are

7Henricks et al. (2018)

26



presented in Table 8 and Table 9 for 2SLS and 2SQR respectively. From Table 8, we note that although the

absolute magnitudes of the coefficients of the variables differ, the signs and significance of the coefficients

are in line with the previous ones obtained from the full model presented in Table 6, which confirms our main

findings are robust with model specification. Further comparison shows that even with a small number of

variables, the model performance and fit is not changed significantly. 2SQR results between the full (Table 7)

and parsimonious model (Table 9) also suggest similar patterns of the estimated coefficients across quantiles. As

can be seen in Figure 7, we find a clear upward trend in the coefficients for the spatial lag term and downward

trend in those for the income variable, and as before, these patterns are generalizable to other years with varying

magnitude (Figure 8).

TABLE 8 Robust 2SLS estimation results based on queen contiguity (dependent variable: squared returns)

2010 2011 2012 2013 2014 2015 2016

W y 0.660*** 0.583*** 0.676** 0.470** 0.698*** 0.750*** 0.781***

(0.222) (0.214) (0.279) (0.190) (0.148) (0.190) (0.175)

Constant 1.662*** 1.374** 1.257* 1.171*** 0.634*** 0.863* 0.664*

(0.612) (0.587) (0.655) (0.389) (0.237) (0.501) (0.357)

Income −0.148*** −0.121** −0.111* −0.103*** −0.056*** −0.077* −0.059*

(0.054) (0.052) (0.058) (0.035) (0.021) (0.044) (0.031)

n 1246 1279 1279 1284 1279 1292 1279

Pseudo R2 0.111 0.041 0.009 0.015 0.059 0.143 0.219

Note: Standard errors in parentheses. Pseudo R2 is computed as the squared correlation between observed and

predicted values of the dependent variable. ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1

TABLE 9 2SQR estimation results based on queen contiguity (dependent variable: squared returns)

Quantiles (τ )

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

W y 0.056** 0.124*** 0.114*** 0.151*** 0.177*** 0.275*** 0.360*** 0.523*** 0.845***

(0.027) (0.038) (0.039) (0.040) (0.048) (0.054) (0.095) (0.145) (0.242)

Constant 0.001 0.000 0.046** 0.096*** 0.173*** 0.183** 0.373** 0.508 1.024

(0.004) (0.013) (0.022) (0.037) (0.054) (0.083) (0.181) (0.318) (0.749)

Income 0.000 0.000 −0.004** −0.008** −0.015*** −0.015** −0.032** −0.043 −0.088

(0.000) (0.001) (0.002) (0.003) (0.005) (0.007) (0.016) (0.027) (0.064)

n 1,292 1,292 1,292 1,292 1,292 1,292 1,292 1,292 1,292

Pseudo R2 0.128 0.128 0.135 0.138 0.141 0.138 0.142 0.141 0.143

Note: Standard errors in parentheses. The standard errors for quantile regression are obtained through 500 bootstrap replications.

Pseudo R2 is computed as the squared correlation between observed and predicted values of the dependent variable. Results are

based on 2015 data. ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1
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(a) Spatial lag term (b) Income

FIGURE 7 2SLS and 2SQR coefficient estimates by quantile

(a) Spatial lag term (b) Income

FIGURE 8 2SQR coefficient estimates by quantile

To ensure our results are robust to the choice of spatial weight matrix, we employ two alternative distance-

based spatial weight matrices using a fixed distance band and inverse distance. The first one is a binary weight

matrix based on a prespecified buffer zone. All census tracts within a prespecified distance receive a one in
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the weight matrix, with all others assigned zero. The distance is determined from the minimum distance such

that every census tract has at least one neighbor. In our case, this distance was set to 3 miles between the

centroids. The same prespecified distance is used to specify a inverse distance matrix. The inverse distance

method allows neighbors located closer to each other to have higher weights than neighbors located far away.

These weight matrices are also row-normalized. 2SLS results presented in Table 10 show that alternative spatial

weight matrices give broadly the same estimates and significance levels. It is noteworthy that the two spatial

weight matrices are sparser, i.e., most of its elements are assigned zero, thus spillover effects become somewhat

less significant. 2SQR results obtained with both alternative specifications also reflect similar patterns in the

coefficient estimates of the spatial lag term (Figure 9) and income (Figure 10) across quantiles to those obtained

when using the queen contiguity.

TABLE 10 Robust 2SLS estimation results based on alternative weight matrices (dependent variable: squared returns)

2010 2011 2012 2013 2014 2015 2016

Panel A: Fixed distance band

Spatial lag term 0.426*** 0.511*** 0.627*** 0.564*** 0.659*** 0.598*** 0.660***

(0.160) (0.177) (0.189) (0.149) (0.133) (0.150) (0.137)

Constant 2.022*** 1.839*** 1.189** 0.849** 0.775*** 1.274*** 1.031***

(0.471) (0.510) (0.590) (0.377) (0.281) (0.391) (0.302)

Income −0.180*** −0.163*** −0.106** −0.075** −0.069*** −0.114*** −0.092***

(0.042) (0.045) (0.052) (0.034) (0.025) (0.034) (0.027)

n 1246 1279 1279 1284 1279 1292 1279

Pseudo R2 0.109 0.088 0.028 0.028 0.134 0.109 0.149

Panel B: Inverse distance

Spatial lag term 0.430** 0.574*** 0.736*** 0.573*** 0.701*** 0.643*** 0.711***

(0.173) (0.207) (0.226) (0.168) (0.135) (0.161) (0.156)

Constant 2.051*** 1.451*** 0.701 0.802* 0.709** 1.094** 0.787**

(0.547) (0.554) (0.653) (0.467) (0.282) (0.429) (0.334)

Income −0.182*** −0.129*** −0.063 −0.071* −0.063** −0.097*** −0.070**

(0.049) (0.049) (0.058) (0.042) (0.025) (0.038) (0.029)

n 1246 1279 1279 1284 1279 1292 1279

Pseudo R2 0.121 0.094 0.025 0.031 0.132 0.127 0.176

Note: Standard errors in parentheses. Pseudo R2 is computed as the squared correlation between observed and

predicted values of the dependent variable. ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1
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(a) Fixed distance band (b) Inverse distance

FIGURE 9 2SQR coefficient estimates for spatial lag term by quantile

(a) Fixed distance band (b) Inverse distance

FIGURE 10 2SQR coefficient estimates for income by quantile
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7 Conclusion

In this paper, we examine the efficiency of housing markets in the spatial dimension, based on the extension of

a temporal model for the EMH. The spatial dimension of the housing market efficiency is investigated through

spatial ARCH and SQR models and empirical results obtained from those of estimated models are explained not

only with general reasons but also with characteristics specific to the regional U.S. housing market. Matching

with theoretical expectations, the empirical results suggest that while there is no significant spatial dependence in

the level of returns, squared returns (volatility) exhibit significant spatial dependence. The presence of nonlinear

spatial dependence in housing returns indicates that housing markets are spatially inefficient, thus the housing

returns could contain useful information for predicting the returns of neighboring locations. Another finding is

that the income variable is negatively correlated with squared returns, indicating that higher household income

leads to lower volatility of housing returns.

Applying the spatial quantile regression technique, we find a clear upward trend of the quantile effects of the

spatial dependence; this finding implies a varying degree of market inefficiency and that the housing returns

of nearby areas more positively influence those of high-volatility areas than low-volatility areas. It is also

shown that the coefficients on income are negative with a clear downward trend, suggesting that the decrease

of household income generates housing returns that are more volatile in areas with higher housing returns. The

findings of this paper should help housing policy makers make appropriate decisions to create a more stable and

sustainable housing market by mitigating housing market volatility, particularly in disadvantaged areas.

Future explorations could explore several facets of the analysis that have received less attention. First, it

would be necessary to build a more theoretical framework to reinforce the idea of spatial market efficiency.

Second, as mentioned earlier, the robustness of identified spatial patterns along the distribution across different

housing markets needs to be examined to determine whether those patterns can be generalized beyond the

study area. Also, since this research is currently based on the cross-sectional analysis by focusing on the spatial

interactions between neighborhoods, it would be interesting to examine what could be changed when using panel

data analysis. The plan also includes applying different types of aggregation of the data as it is well recognized

in the empirical literature that the degree of spatial dependence decreases with aggregation of spatial units.

Finally it would also be interesting to see how well the model can predict the neighboring returns outside the

study area.
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