
Bayesian Inference for Spatial Stochastic Volatility Models∗

Süleyman Taşpınar† Osman Doğan‡ Jiyoung Chae§ Anil K. Bera¶

November 12, 2019

Abstract

In this study, we propose a spatial stochastic volatility model in which the latent log-volatility
terms follow a spatial autoregressive process. Though there is no spatial correlation in the
outcome equation (the mean equation), the spatial autoregressive process defined for the log-
volatility terms introduces spatial dependence in the outcome equation. To introduce a Bayesian
Markov chain Monte Carlo (MCMC) estimation algorithm, we transform the model so that the
outcome equation takes the form of log-squared terms. We approximate the distribution of the
log-squared error terms in the outcome equation with a finite mixture of normal distributions
so that the transformed model turns into a linear Gaussian state-space model. Our simulation
results indicate that the Bayesian estimator has satisfactory finite sample properties. We inves-
tigate the practical usefulness of our proposed model and estimation method by using the price
returns of residential properties in the broader Chicago Metropolitan area.
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1 Introduction

Stochastic volatility models and autoregressive conditional heteroskedasticity (ARCH)-type models

are designed to capture volatility clustering phenomenon observed in financial time series. Unlike

the ARCH type models, the standard stochastic volatility model consists of separate independent

error processes for the conditional mean and the conditional variance. The process for the con-

ditional variance is specified as a log-normal autoregressive process with independent innovations.

There is evidence that the stochastic volatility models can offer increased flexibility over the ARCH-

type models (Fridman and Harris, 1998; Jacquier et al., 1994, 2004; Kim et al., 1998). The purpose

of this paper is to extend the standard stochastic volatility model to spatial data. We suggest a

parsimonious specification in which we directly model the log-volatility terms through a first-order

spatial autoregressive process. The resulting spatial stochastic volatility model shares similar prop-

erties with the standard stochastic volatility model in time series, and it is designed to capture

volatility clustering observed in spatial data.

As in the standard stochastic volatility model, our specification consists of two independent error

terms for the outcome and the log-volatility equations, respectively. Under the assumption that

both error terms have conditional normal distribution, our spatial process implies a leptokurtic

symmetric distribution for spatial data. More importantly, though our specification implies no

spatial correlation in the outcome variable, the spatial autoregressive process defined for the log-

volatility introduces spatial correlation in higher moments of the outcome variable, implying spatial

dependence in the outcome variable. To test the spatial dependence in the outcome variable, we

formulate a test based on the spatial autoregressive parameter in the log-volatility equation.

To introduce an estimation approach for our specification, we transform the model so that

the outcome equation takes the form of log-squared terms. For a similar spatial model, Robinson

(2009) approximates the distribution of the log-squared error terms with the normal distribution and

establishes the asymptotic consistency and normality of the resulting Gaussian pseudo-maximum

likelihood estimator (PMLE). In the time series literature, the PMLEs obtained in this way for

the stochastic volatility models also attain the standard large sample properties, but they are sub-

optimal in the sense that they have poor finite sample properties (Jacquier et al., 1994; Kim et al.,

1998; Sandmann and Koopman, 1998; Shephard, 1994). Therefore, we propose approximating the

distribution of the log-squared error terms by a mixture of Gaussian distributions (Kim et al.,

1998; Shephard, 1994). The resulting estimation system turns into a Gaussian state-space model,

where the log-volatility equation constitutes the state equation. We then introduce a Bayesian

MCMC estimation approach in which a data augmentation scheme is used to treat the latent

log-volatility terms as additional parameters, which are estimated as a natural by-product of the

estimation process. In a Monte Carlo study, we investigate the finite sample properties of our

Bayesian estimator along with a (naive) Bayesian estimator based on an algorithm in which the

distribution of log-squared error terms is approximated by the normal distribution. Our results

indicate that the naive estimator has poor finite sample properties, whereas the Bayesian estimator

based on the finite mixture of normal distributions performs well. To test the presence of spatial
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correlation in the log-volatility, i.e., to test spatial dependence in the outcome variable, we suggest

using the Savage-Dickey density ratio (SDDR) for the calculation of the Bayes factor (Dickey, 1971;

Verdinelli and Wasserman, 1995).

To investigate the practical usefulness of our proposed methodology, we apply our specification

to the price returns of the residential properties in the broader Chicago Metropolitan area for the

years of 2014 and 2015. We first use the Moran I test to check for the presence of spatial correlations

in the returns and squared returns. The results indicate that there is a mild indication for spatial

correlation in the return series; however, a very strong evidence for spatial correlation in the squared

returns. Based on these results, the housing market may not be efficient and therefore we estimate a

specification that allows for spatial correlations both in the returns and the log-volatility terms. We

show that the estimated spatial autoregressive parameters are significant. The conditional variance

estimates indicate that the lower estimates are scattered over the suburbs of the city of Chicago,

while relatively larger estimates are concentrated over a corridor extending from the west side of

the city to the south side.

The rest of the paper is organized as follows. In Section 2, we provide a brief review of the

related literature, where we first describe the theory related to our estimation approach, and then

the literature on house price formations. We discuss the empirical justification for specification

based on the stylized facts in the context of price returns in the residential properties, in particular,

in the city of Chicago and its surrounding suburbs. In Section 3, we state our model specification

and discuss its properties. In Section 4, we show how the Bayesian MCMC method can be used to

estimate our model. In Section 5, we develop a test based on the SDDR to test the presence of spatial

correlation in log-volatility terms. In Section 6, we consider some extension of our parsimonious

model and show how the Bayesian estimation approach should be adjusted accordingly. In Section 7,

we investigate the finite sample properties of our suggested algorithms through a Monte Carlo study.

In Section 8, we provide the details of our empirical application on house price returns. In Section 9,

we offer concluding comments.

2 Related Literature

The model specification suggested in this paper belongs to a recent and growing literature on

spatial econometric models. These models extend the conventional regression models by including

spatial lag(s) of the dependent variable (and/or spatial lag(s) of the disturbance terms). Spatial

models formulated in this way are called spatial autoregressive models, which can be considered as

the empirical counterparts for the equilibrium outcome of theoretical models of interacting spatial

units (Anselin, 1988, 2007; Baltagi et al., 2014; Cliff and Ord, 1972; Doğan and Taşpınar, 2018;

Elhorst, 2014; Kelejian and Prucha, 2010; Lee, 2004, 2007; Lee et al., 2010; LeSage and Pace,

2009; Ord, 1975). Recently, some studies have also used the terminology, weak and strong spatial

dependence, to respectively refer to regression models that have spatial lag terms and interactive

fixed effects (Bailey et al., 2016; Chudik et al., 2011; Han and Lee, 2016; Pesaran, 2015; Shi and
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Lee, 2017). Robinson (2009) introduces a spatial process that allows for no spatial correlation in the

dependent variable, but spatial correlation in the higher moment of the dependent variable. Our

paper is closely related to Robinson (2009), but differs in two important aspects. First, we consider

extended versions that allow for spatial correlation in the dependent variable and in the higher

moment of the dependent variable. Second, instead of using the PMLE suggested in Robinson

(2009), we propose the Bayesian MCMC estimation approach with a data augmentation scheme

for estimation. In our approach, the estimates of the latent log-volatility terms are produced as a

natural by-product of the estimation process.

In an empirical application, we focus on the spatial dependence in the log-volatilities of the

returns calculated from house prices in the broader Chicago Metropolitan area. Spatial correlation

in house price variations may arise due to several factors. For example, Meen (1999) points to

migration, equity transfer, spatial arbitrage and spatial patterns in the determinants of house prices.

Bailey et al. (2016) use a two-stage approach to analyze strong and weak spatial dependence in house

price changes at the level of Metropolitan Statistical Areas (MSA) in the US over the period 1975 to

2010. Their results show statistically significant positive and negative spill-over effects across MSAs

in the USA over the period 1975 to 2010, with the positive effects being more prevalent. There are

also studies incorporating spatial correlation into the standard vector autoregression models (VARs)

to explore spatio-temporal diffusion of house prices through impulse response analysis (Beenstock

and Felsenstein, 2007; Brady, 2011; Holly et al., 2011; Kuethe and Pede, 2011). A significant

bulk of literature focuses on testing the cointegration relationships between house prices and their

determinants implied by the arbitrage equations derived from theoretical models (Gallin, 2006;

Holly et al., 2010; Meen, 1996). Holly et al. (2010) consider a model in which the price of a house is

determined by setting the expected net benefit from owning the house against the real rental cost

of the same property. The market equilibrium implies a cointegrating relationship between the real

price of housing and the real per capita personal disposable income, and Holly et al. (2010) use

annual US states level data from 1975 to 2003 to establish panel cointegration by taking explicit

account of both cross-sectional dependence and parameter heterogeneity.

In this paper, we focus on the returns calculated from the first difference of log house prices

and suggest a parsimonious formulation to model spatial dependence in returns. Our formulation

allows us to make a clear distinction between spatial correlation (linear dependence) and spatial

dependence (non-linear dependence) in the returns. Our approach allows for modeling conditional

mean and conditional variance of returns through separate spatial autoregressive processes. Fur-

thermore, our Bayesian estimation approach yields estimates of latent conditional variance terms.

For the empirical justification of our formulation, we use the residential property sale prices in the

city of Chicago and its surrounding suburbs for years 2014 and 2015. As shown in the scatter plots

of the returns and squared returns in Figure 1, the spatial clustering in returns is somewhat weak,

however, there are spatial clustering patterns in squared returns, suggesting that the conditional

variance of the returns may vary over space.1 Indeed, as we will show in Section 8, the Moran I

1The returns and squared returns are classified into low and high categories according to whether they are smaller
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test rejects the null hypothesis of no spatial correlation in the squared returns.

3 Model Specification

Following the time series literature on stochastic volatility models, we specify the following outcome

equation

yi = e
1
2
hi εi, for i = 1, . . . , n, (3.1)

where εi is an independent and identically distributed (i.i.d) normal random variable with mean

zero and unit variance for i = 1, . . . , n. We assume a first-order spatial autoregressive process for

hi:

hi − µh = λ

n∑
j=1

wij(hj − µh) + ui, (3.2)

where µh is the constant mean, wij ’s for i, j = 1, . . . , n are non-stochastic spatial weights, and ui

is an i.i.d normal random variable with mean zero and variance σ2u. We assume that ui and εj

are independent for all i, j.2 The scalar parameter λ is the spatial autoregressive parameter and

measures the degree of spatial correlation among hi’s. It follows that the conditional variance of yi

given hi is

Var (yi|hi) = ehi , (3.3)

which makes the conditional variance of yi is space-varying. Thus, analogous to time-series literature

on stochastic volatility models, we refer to hi as the log-volatility. Let h = (h1, . . . , hn)
′

be the

n×1 vector of log-volatilities and u = (u1, . . . , un)
′

be the n×1 vector of disturbance terms. Then,

(3.2) can be written in vector form as

h− lnµh = λW(h− lnµh) + u, (3.4)

where W = (wij) is the n×n non-stochastic spatial weights matrix that has zero diagonal elements

and ln is the n× 1 vector of ones. The spatial autoregressive model is an equilibrium model, hence

we assume that h− lnµh = S−1(λ)u exists, where S(λ) = (In − λW) and In is the n× n identity

matrix.

The process yi defined through (3.1) and (3.2) exhibits no spatial correlation since E(yiyj) = 0

for all i 6= j. Furthermore, all odd moments of yi are zero since εi has the standard normal

distribution and is independent of hi for all i. Let Ki(λ) be the ith row vector of S−1(λ) and r ∈ N

or larger than their corresponding sample averages. The details of this data set are provided in Section 8.
2Our parsimonious model consists of (3.1) and (3.2). In Section 6, we consider some extensions and show how the

Bayesian estimation should be adjusted accordingly.
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Figure 1: Scatter plots: (a) Returns (top), (b) squared returns (bottom)
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be an even number. Then, all even moments of yi exist and are given by

E(yri ) = E
(
e

1
2
hir
)
E (εri ) = e

µhr

2
+
σ2ur

2

8
‖Ki(λ)‖2µ(r), (3.5)

where µ(r) = r!
2r/2×(r/2)! . Using (3.5), it can be shown that E(y4i )/

[
E(y2i )

]2 − 3 =

3
(
eσ

2
u‖Ki(λ)‖2 − 1

)
> 0. Thus, yi has a leptokurtic symmetric distribution. Now, consider

yri = e
r
2
hi εri for r ∈ N even. It can be shown that

Cov(yri , y
r
j ) = E(e

r
2
(hi+hj))E(εri )E(εrj)− E(e

r
2
hi)E(εri )E(e

r
2
hj )E(εrj)

= µ2(r)e
µhr+

σ2ur
2

8

(
‖Ki(λ)‖2+‖Kj(λ)‖2+2K

′
i(λ)Kj(λ)

)

− µ2(r)e
µhr

2
+
σ2ur

2

8
‖Ki(λ)‖2e

µhr

2
+
σ2ur

2

8
‖Kj(λ)‖2

= µ2(r)

[
eµhr+

σ2ur
2

8 (‖Ki(λ)‖2+‖Kj(λ)‖2)
(
e
σ2ur

2

8
2K
′
i(λ)Kj(λ) − 1

)]
. (3.6)

The covariance in (3.6) is generally not zero, implying spatial dependence for yi’s. When λ = 0,

we obtain Cov(yri , y
r
j ) = 0, because

(
e
σ2ur

2

8
2K
′
i(λ)Kj(λ) − 1

)
= 0. Thus, the presence of spatial

dependence in yi’s can be tested by a test statistic for the null hypothesis of H0 : λ = 0.3

For the Bayesian analysis, we transform the model so that the resulting estimation equation

becomes linear in the log-volatility hi. Thus, we square both sides of (3.1) and then take the natural

logarithm to obtain

y∗i = hi + ε∗i , (3.7)

where y∗i = log y2i , and ε∗i = log ε2i . Note that ε∗i has a logχ2
1 distribution with the density

p(ε∗i ) =
1√
2π

exp

(
−1

2
(eε
∗
i − ε∗i )

)
, −∞ < ε∗i <∞, i = 1, 2, . . . , n. (3.8)

It can be shown that E(ε∗i ) ≈ −1.2704 and Var(ε∗i ) = π2/2 ≈ 4.9348. The density given in (3.8) is

highly skewed with a long left tail.

Let y∗ = (y∗1, . . . , y
∗
n)
′

be the n × 1 vector of the transformed dependent variable, and ε∗ =

(ε∗1, . . . , ε
∗
n)
′

be the n× 1 vector of transformed disturbance terms. Then, in vector form, we have

y∗ = h + ε∗. (3.9)

Analogous to time series literature, we note that (3.9) and (3.4) define a linear state space model

in h. In the time series setting, the state equation determines how the state variable is generated

from the time-lags of the state variable. In our case instead, the state variable h depends on its

spatial-lag term Wh as shown in (3.4).

3In Section 4, we show how this null hypothesis can be tested.
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Table 1: The ten-component Gaussian mixture for logχ2
1

Components pj µj σ2j
1 0.00609 1.92677 0.11265
2 0.04775 1.34744 0.17788
3 0.13057 0.73504 0.26768
4 0.20674 0.02266 0.40611
5 0.22715 -0.85173 0.62699
6 0.18842 -1.97278 0.98583
7 0.12047 -3.46788 1.57469
8 0.05591 -5.55246 2.54498
9 0.01575 -8.68384 4.16591
10 0.00115 -14.65000 7.33342

4 Posterior Analysis

In this section, we determine the conditional posterior distributions of the model parameters. We

approximate the density function p(ε∗i ) given in (3.8) using a mixture of Gaussian distributions (Kim

et al., 1998; Shephard, 1994). More precisely, we consider the following m-component Gaussian

mixture distribution:

p(ε∗i ) ≈
m∑
j=1

pj × φ(ε∗i |µj , σ2j ), (4.1)

where φ(ε∗i |µj , σ2j ) denotes the Gaussian density function with mean µj and variance σ2j , pj is the

probability of jth mixture component and m is the number of components. We can equivalently

represent (4.1) in terms of an auxiliary random variable si ∈ {1, 2, . . . ,m} that serves as the mixture

component indicator:

ε∗i |(si = j) ∼ N(µj , σ
2
j ), and P(si = j) = pj , j = 1, 2, . . . ,m, i = 1, 2, . . . , n. (4.2)

Thus, the model in (3.7) is now conditionally linear and Gaussian given the component indicator

variable s = (s1, . . . , sn). We are now in a position to determine the elements of (4.1) to make the

mixture approximation sufficiently accurate. Following Omori et al. (2007), we use a ten-component

Gaussian mixture distribution whose parameters are given in Table 1. Note that these parameter

values do not vary during estimation, therefore the mixture Gaussian approximation approach does

not induce any additional computation time.

To complete the model specification, we assume the following independent prior distributions for

σ2u, λ and µh: σ2u ∼ IG(a0, b0), λ ∼ Uniform(−1/τ, 1/τ), µh ∼ N(µ0, Vµ), where IG(a0, b0) is the in-

verse gamma distribution with shape parameter a0 and scale parameter b0, and Uniform(−1/τ, 1/τ)

is the uniform distribution, where τ is the spectral radius of W. A closed subset of the inter-

val (−1/τ, 1/τ) can be considered as the parameter space for λ since S(λ) is invertible for all
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λ ∈ (−1/τ, 1/τ).4 Using the Bayes’ theorem, the joint posterior distribution p(h, s, σ2u, µh, λ|y∗)
can be stated as

p(h, s, σ2u, µh, λ|y∗) ∝ p(y∗|h, s)× p(h|σ2u, µh, λ)× p(s)× p(σ2u)× p(µh)× p(λ), (4.3)

where p(y∗|h, s) is the conditional likelihood function of (3.7). Let ds = (µs1 , . . . , µsn)
′

and Σs =

Diag(σ2s1 , . . . , σ
2
sn). Then, from (4.2), we have ε∗|s ∼ N(ds, Σs). It follows from (3.7) and (3.2)

respectively that

y∗|s, h ∼ N (h + ds, Σs) , (4.4)

h|σ2u, µh, λ ∼ N
(
lnµh, σ

2
uS
−1(λ)S

′−1(λ)
)
. (4.5)

We consider the following Gibbs sampler to generate random draws from p(h, s, σ2u, µh, λ|y∗).

Algorithm 1 (Estimation algorithm based on the Gaussian mixture distribution).

1. Sampling step for s:

P(si = j|y∗i , hi) =
pj × φ

(
y∗i |hi + µj , σ

2
j

)
∑10

k=1 pk × φ
(
y∗i |hi + µk, σ

2
k

) , j = 1, . . . , 10, i = 1, . . . , n, (4.6)

where the denominator is the normalizing constant.

2. Sampling step for h:

h|y∗, s, σ2u, µh, λ ∼ N
(
ĥ, Ĥ

−1
h

)
, (4.7)

where Ĥh = Σ−1s + 1
σ2
u
S
′
(λ)S(λ) and ĥ = Ĥ

−1
h

(
Σ−1s (y∗ − ds) + µh

σ2
u
S
′
(λ)S(λ)ln

)
.

3. Sampling step for σ2u:

σ2u|h, µh, λ ∼ IG

(
a0 +

n

2
, b0 +

1

2
(h− lnµh)

′
S
′
(λ)S(λ)(h− lnµh)

)
. (4.8)

4. Sampling step for µh:

µh|h, σ2u, λ ∼ N
(
µ̂0, V̂

−1
µ

)
, (4.9)

where V̂ µ = V −1µ + 1
σ2
u
l
′
nS
′
(λ)S(λ)ln and µ̂0 = V̂

−1
µ

(
1
σ2
u
l
′
nS
′
(λ)S(λ)h + V −1µ µ0

)
.

4See LeSage and Pace (2009) and Kelejian and Prucha (2010) for a discussion on the parameter space for spatial
autoregressive parameters.
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5. Sampling step for λ:

p(λ|h, µh, σ2u) ∝ |S(λ)| × exp

(
− 1

2σ2u
(h− lnµh)

′
S
′
(λ)S(λ)(h− lnµh)

)
, (4.10)

which does not correspond to any known density function. A random-walk Metropolis-

Hastings algorithm can be used to sample from this distribution (LeSage and Pace, 2009). A

candidate value λnew is generated according to

λnew = λold + zλ ×N(0, 1), (4.11)

where zλ is the tuning parameter. The candidate value λnew is accepted with probability

P(λnew, λold) = min
(

1, p(λ
new|h,σ2

u,µh)
p(λold|h,σ2

u,µh)

)
.

Remark 1. In sampling h, we can reduce the computational burden by first obtaining the Cholesky

factor C such that C
′
C = Ĥh, and then solving C

′
Cĥ = Σ−1s (y∗ − ds) + µh

σ2
u
S
′
(λ)S(λ)ln for ĥ.

Then, we can sample from N
(
ĥ, Ĥ

−1
h

)
by first drawing from u ∼ N(0, In) and solving Cξ = u for

ξ, and finally setting h = ĥ + ξ (Chan and Jeliazkov, 2009).

Remark 2. In Step 5, the tuning parameter zλ is adjusted such that the acceptance rate falls

between 40% and 60% during the sampling process (LeSage and Pace, 2009). In sampling λ, we

can alternatively consider an independence-chain Metropolis-Hastings algorithm or a Griddy-Gibbs

algorithm. In the case of independence-chain Metropolis-Hastings algorithm, a tailored normal

distribution N(µλ, σ
2
λ), where µλ is the mode of log p(λ|h, σ2u, µh) and σ2λ is the inverse of the

negative Hessian of log p(λ|h, σ2u, µh) evaluated at the mode, can be used to generate candidate

values (Chib and Greenberg, 1994, 1995). The mode of log p(λ|h, σ2u, µh) can be found by using the

Newton-Raphson recursion based on

∂ log p(λ|h, σ2u, µh)

∂λ
= −tr

(
S−1(λ)W

)
+

1

σ2u
(h− lnµh)

′
W
′
S(λ)(h− lnµh), (4.12)

∂2 log p(λ|h, σ2u, µh)

∂λ2
= −tr

(
[S−1(λ)W]2

)
− 1

σ2u
(h− lnµh)

′
W
′
W(h− lnµh). (4.13)

Then, the candidate value λnew generated from N(µλ, σ
2
λ) is accepted with probability

P (λnew, λold) = min
(

1,
p(λnew|h,σ2

u,µh)×φ(λold|µλ,σ2
λ)

p(λold|h,σ2
u,µh)×φ(λnew|µλ,σ2

λ)

)
.

The Griddy-Gibbs sampler can be considered as a discretized version of the inverse-transform

method and it only requires the evaluation of the target density (Ritter and Tanner, 1992). Here,

the conditional posterior distribution of λ is approximated by a discretized distribution on a fine

grid formed from the parameter space of λ. Note that, in terms of computational efficiency, the

random-walk Metropolis-Hastings algorithm is relatively more efficient than the other two algo-

rithms. Therefore, we use this algorithm to generate draws for λ in our simulation.

An alternative approach for the estimation of our model can be based on the approximation

of the normal distribution to the distribution of log ε2i (Harvey et al., 1994; Robinson, 2009; Ruiz,
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1994). Although the QMLE obtained based on this approximation method has the standard large

sample properties, it is sub-optimal in the sense that it has poor finite sample properties because

the distribution of log ε2i is poorly approximated by the normal distribution. We compare the ten-

component Gaussian mixture (given in Table 1) and the standard normal distribution in terms of

how well they approximate to the distribution of log ε2i . In Figure 2, we plot the density of each

distribution. Figure 2(a) shows the densities of logχ2
1 and the Gaussian distribution that has a

mean of −1.2704 and a variance of π2/2. In Figure 2(b), we plot the densities of logχ2
1 and the

ten-component Gaussian mixture distribution. The ten-component Gaussian mixture distribution

approximates the distribution of log ε2i very closely.
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(a) Densities of logχ2
1 and N(−1.2704, π2/2)
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Figure 2: Densities of logχ2
1 and its approximations

Next, we illustrate the Bayesian estimation under the Gaussian approximation. Let ξi =

log ε2i −E(log ε2i ). Then, we can express (3.7) in terms of ξi as

y◦i = hi + ξi, (4.14)

where y◦i = y∗i + 1.2704. Let y◦ = (y◦i , . . . , y
◦
n)
′

be the n× 1 vector. Under the assumption that ξi

is i.i.d Gaussian with mean zero and variance π2/2, we have

y◦|h ∼ N
(
h, π2/2In

)
. (4.15)

Given our assumed prior distributions for σ2u, µh and λ, the following four steps Gibbs sampler can

be considered to generate random draws from p(h, σ2u, µh, λ|y◦).

Algorithm 2 (Estimation algorithm based on Gaussian approximation ).
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1. Sampling step for h:

h|y◦, σ2u, µh, λ ∼ N
(
h†, H†−1h

)
, (4.16)

where H†h = 2
π2 In + 1

σ2
u
S
′
(λ)S(λ) and h† = H†−1h

(
2
π2 y◦ + µh

σ2
u
S
′
(λ)S(λ)ln

)
.

2. Sampling step for σ2u:

σ2u|h, µh, λ ∼ IG

(
a0 +

n

2
, b0 +

1

2
(h− lnµh)

′
S
′
(λ)S(λ)(h− lnµh)

)
. (4.17)

3. Sampling step for µh:

µh|h, σ2u, λ ∼ N
(
µ†0, V

†−1
µ

)
, (4.18)

where V †µ = V −1h + 1
σ2
u
l
′
nS
′
(λ)S(λ)ln and µ†0 = V †−1µ

(
V −1h µ0 + 1

σ2
u
l
′
nS
′
(λ)S(λ)h

)
.

4. Sampling step for λ:

p(λ|h, σ2u, µh) ∝ |S(λ)| × exp

(
− 1

2σ2u
(h− lnµh)

′
S
′
(λ)S(λ)(h− lnµh).

)
, (4.19)

which does not correspond to a known form. We can use the random-walk Metropolis-Hastings

algorithm described in Step 5 of Algorithm 1 to sample this parameter.

5 Testing Spatial Dependence

In this section, we consider a test for the null hypothesis of no spatial dependence, i.e., H0 : λ = 0

against H1 : λ 6= 0 in (3.2). In the Bayesian approach, hypothesis testing can be considered as

a model comparison exercise and thus can be conducted through the Bayes factors calculated for

the competing models (see Kass and Raftery (1995) for a survey on the Bayes factors). Since our

null hypothesis requires a nested model comparison, we consider the Savage-Dickey density ratio

(SDDR) proposed by Dickey (1971) and Verdinelli and Wasserman (1995) for calculating the Bayes

factor. Let MR and MU be respectively the restricted and the unrestricted model. Then, the Bayes

factor in favor of the unrestricted model is

BFUR =
p(y∗|MU )

p(y∗|MR)
, (5.1)

where p(y∗|Mj) =
∫
p(y∗|θj ,Mj) × p(θj |Mj)dθj is the corresponding marginal likelihood or

marginal data density for j ∈ {U,R}, and θj is the corresponding parameter vector in the compet-

ing models. Since our prior distributions are independent, the Bayes factor in (5.1) reduces to the

12
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SDDR given by (Verdinelli and Wasserman, 1995)

BFUR =
p(λ = 0|MU )

p(λ = 0|y∗,MU )
, (5.2)

where p(λ = 0|MU ) and p(λ = 0|y∗,MU ) are respectively the prior and the marginal posterior of

λ evaluated at λ = 0. Thus, if p(λ = 0|MU ) is larger than p(λ = 0|y∗,MU ), i.e., if λ = 0 is more

likely under the prior relative to the marginal posterior, then BFUR provides evidence in favor of

H1. Given the Uniform(−1/τ, 1/τ) prior on λ, we have p(λ = 0|MU ) = τ/2, and the marginal

posterior p(λ = 0|y∗,MU ) can be estimated by the following Rao-Blackwell estimator:

p̂(λ = 0|y∗,MU ) =
1

R

R∑
r=1

p(λ = 0|y∗,hr, sr, σ2ru , µrh), (5.3)

where {hr, sr, σ2ru , µrh}Rr=1 is the sequence of random draws generated through Algorithm 1 or Algo-

rithm 2 (Gelfand and Smith, 1990). Note that the estimator in (5.3) requires that the conditional

density of λ is in a standard form, which is not the case given our result in (4.10). However, the

conditional posterior density of λ is bounded on the interval (−1/τ, 1/τ), and thus we can eval-

uate the density on a grid given the posterior draws. In the following algorithm, we show how

p(λ = 0|y∗,MU ) can be evaluated.

Algorithm 3 (Calculating SDDR).

1. Construct a grid with random points λ1, . . . , λm from the interval (−1/τ, 1/τ), where τ is the

spectral radius of W. The grid must include λk = 0.

2. Compute pr(λi) =
p(λi|y∗,hr,sr,σ2r

u ,µ
r
h)∑m

j=1 p(λj |y∗,hr,sr,σ2r
u ,µ

r
h)

for i = 1, . . . ,m and r = 1, . . . , R.

3. Compute p(λi) =
∑R

r=1 pr(λi) for i = 1, . . . ,m.

4. Then, p̂(λ = 0|y∗,MU ) = p(λk).

6 Some Extensions

In this section, we extend out basic model in (3.1) in three directions and show how the suggested

Gibbs samplers can be adjusted accordingly. In the first extension, we assume that the process has

a deterministic mean equation determined by a vector of exogenous variables. More specifically, we

consider

yi = x
′
iβ + e

1
2
hi εi, for i = 1, . . . , n, (6.1)

where xi is the k × 1 vector of exogenous variables with the matching parameter vector β. It is

obvious that this model has the same characteristics as our simple model in (3.1), except having

a non-zero mean for the outcome variable. Our auxiliary mixture sampler introduced in Section 3
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should be modified by simply replacing y∗i with log(yi − x
′
iβ)2 in Algorithm 1. For the prior of

β, we assume that β ∼ N(µβ, Vβ). Let y = (y1, . . . yn)
′

and X = (x
′
1, . . . ,x

′
n)
′
. Then, it can be

shown that

β|y,h ∼ N(µ̂β, V̂
−1
β ), (6.2)

where V̂β = V−1β + X
′
Diag(e−h1 , . . . , e−hn)X and µ̂β =

V̂
−1
β

(
V−1β µβ + X

′
Diag(e−h1 , . . . , e−hn)y

)
. Thus, our auxiliary mixture sampler in Section 3 is

completed with this extra block of sampling from p(β|y,h).

In our second extension, we consider a first-order spatial autoregressive process for the dependent

variable. More precisely, we consider

yi = ρ
n∑
j=1

mijyj + x
′
iβ + νi, νi = e

1
2
hi εi, for i = 1, . . . , n, (6.3)

where mij ’s are exogenous spatial weights, νi is the regression disturbance term, hi is the log-

volatility of νi, and ρ is the scalar spatial autoregressive parameter measuring the degree of spatial

correlation in the dependent variable. In vector form, (6.3) can be written as

y = ρMy + Xβ + Diag(e
1
2
h1 , . . . , e

1
2
hn)ε, (6.4)

where M = (mij) is the n × n matrix of spatial weights that has zero diagonal elements. Let

R(ρ) = (In−ρM). Since the spatial autoregressive model is an equilibrium model, we assume that

the following reduced form exits,

y = R−1(ρ)Xβ + R−1(ρ) Diag(e
1
2
h1 , . . . , e

1
2
hn)ε. (6.5)

Next, we consider the extension of our auxiliary mixture sampler in Algorithm 1 for this model.

First, the auxiliary sampler should be modified by replacing y∗i with log(yi− ρ
∑n

j=1mijyj − x
′
iβ)2

in sampling s, h, σ2u, µh and λ in Algorithm 1. Second, we assume the following prior distributions

for β and ρ to determine the conditional posteriors of these parameters: β ∼ N(µβ,Vβ), and

ρ ∼ Uniform(−1/γ, 1/γ), where γ is the spectral radius of M. Then, we have

p(β|y,h, ρ) ∝ exp

(
−1

2
(R(ρ)y −Xβ)

′
Diag(e−h1 , . . . , e−hn)(R(ρ)y −Xβ)

)
× exp

(
−1

2
(β − µβ)

′
V−1β (β − µβ)

)
, (6.6)

which implies that

β|y,h, ρ ∼ N(µ̂β, V̂
−1
β ), (6.7)
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where V̂β = V−1β + X
′
Diag(e−h1 , . . . , e−hn)X and µ̂β =

V̂
−1
β

(
V−1β µβ + X

′
Diag(e−h1 , . . . , e−hn)R(ρ)y

)
. Finally, the conditional posterior distribu-

tion of ρ is given by

p(ρ|y,h,β) ∝ |R(ρ)| × exp

(
−1

2
(R(ρ)y −Xβ)

′
Diag(e−h1 , . . . , e−hn)(R(ρ)y −Xβ)

)
(6.8)

which is not in a standard form. The random walk Metropolis-Hastings algorithm discussed in

Section 4 can be used to generate random draws from p(ρ|y,h,β).

For the final extension, we consider a model that has spatial dependence in both the dependent

variable and the disturbance terms. More specifically, we consider

yi = ρ1

n∑
j=1

m1,ijyj + x
′
iβ + νi, νi = ρ2

n∑
j=1

m2,ijνj + e
1
2
hi εi, i = 1, . . . , n, (6.9)

where m1,ij and m2,ij are spatial weights, νi is the regression disturbance term and the scalar

parameters ρ1 and ρ2 are spatial autoregressive parameters. In vector form, we have

y = ρ1M1y + Xβ + ν, ν = ρ2M2ν + Diag(e
1
2
h1 , . . . , e

1
2
hn)ε, (6.10)

where M1 = (m1ij) and M2 = (m2ij) are n × n spatial weights matrices that have zero diagonal

elements, and ν = (ν1, . . . , νn)
′

is the n× 1 vector of disturbance terms. Let R1(ρ1) = (In− ρ1M1)

and R2(ρ2) = (In − ρ2M2). Under the assumption that R1(ρ1) and R2(ρ2) are invertible, the

reduced form of (6.9) is given by

y = R−11 (ρ1)Xβ + R−11 (ρ1)R
−1
2 (ρ1) Diag(e

1
2
h1 , . . . , e

1
2
hn)ε. (6.11)

We note that (6.11) is in the form of (6.5) and therefore the same estimation approach can be

adopted for the estimation of this extended model.

7 A Monte Carlo Study

7.1 Design

In this section, we design a Monte Carlo study to assess sampling properties of the suggested

Bayesian algorithms. We consider two different data generating processes (DGPs). We will refer to

the first case as the SV specification, and to the latter as the SARSV specification. More specifically,
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the DGPs respectively are

yi = e
1
2
hi εi, hi − µh = λ

n∑
j=1

wij(hj − µh) + ui, for i = 1, . . . , n, (7.1)

yi = ρ
n∑
j=1

mijyj + x
′
iβ + e

1
2
hi εi, hi − µh = λ

n∑
j=1

wij(hj − µh) + ui, for i = 1, . . . , n,

(7.2)

where εi’s and ui’s are generated independently from the standard normal distribution. For the

weights matrices, we use the two cases that we consider in our empirical application section. We

generate rook and queen contiguity-based weights matrices from the 1292 census tracts in the

broader Chicago Metropolitan area. Both weights matrices are row normalized so that each row

sums to unity. In the SARSV specification, we set W = M and only include an intercept term as

the explanatory variable, i.e. xi = 1 for all i. Given our parameter estimates from our empirical

application in Section 8, we use the following true parameter values: ρ = 0.15, β = 0.05, λ = 0.9,

µh = −3 and σ2u = 0.5. The number of resamples for both experiments is set to 50.

For the prior distributions, we consider the following: σ2u ∼ IG(2, 0.5), ρ ∼ Uniform(−1, 1),

λ ∼ Uniform(−1, 1), µh ∼ N(0, 10) and β ∼ N(0, 10). The length of the Markov chain is 12000

draws, and the first 2000 draws are discarded to dissipate the effect of the initial values. We consider

the following algorithms: (i) Algorithm 1 with the random-walk MH sampler for ρ and λ (10 MH),

(ii) Algorithm 2 with the random-walk MH sampler for ρ and λ (N MH). To determine adequacy of

the length of our samplers, we apply the methodology suggested by Raftery and Lewis (1992). Some

exemplary trace plots of the Bayesian estimates are provided in Figures 3–5 to demonstrate the

convergence of MCMC samplers. In these trace plots, the red solid line corresponds to the estimated

posterior mean, 10 MH denotes Algorithm 1 and N MH denotes Algorithm 2. For the sake of

brevity, we only present the results for the Queen contiguity case for the SARSV model. These trace

plots show that the estimated posterior means are close to the corresponding true parameter values.

Following Jacquier et al. (2004), we report the average bias and the root mean square errors (RMSE)

for ρ, β, λ, µh and σ2u, and the following two summary measures for h. Let hrji be the ith log-volatility

calculated in the jth repetition and rth-pass from the sampler. Then, for the stochastic volatility,

we report the grand RMSE calculated by RMSE=
[

1
50×R×n

∑n
i=1

∑50
j=1

∑R
r=1(h

r
ji − ĥji)2

]1/2
. We

also report the mean absolute errors calculated by MAE= 1
n

∑n
i=1 |ĥi − hi|, where ĥi is the Bayesian

estimate of ith log-volatility and hi is the corresponding true value. For the model selection, we

focus on the true model selection frequency over 50 repetitions. To this end, we calculate the

rejection frequency for the null hypothesis H0 : λ = 0.9 using the associated SDDR’s based on

Algorithm 3.
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7.2 Simulation Results

The simulation results are presented in Table 2 for the SV model and Table 3 for the SARSV model.

In these tables, 10 MH denotes the auxiliary mixture sampler in Algorithm 1 and N MH denotes the

naive sampler in Algorithm 2. In terms of scalar measures reported in Table 2, we observe that both

algorithms perform similarly for λ and σ2u in terms of bias and efficiency. The estimated posterior

means for these parameters are close their true values in both algorithms. However, the naive

sampler (Algorithm 2) imposes severe downward bias on µh, which is about 80%. This also results

in a significant loss in efficiency as shown by the corresponding large RMSE. Similarly, for h, the

two summary measures indicate that the naive sampler performs worse than the auxiliary mixture

sampler (Algorithm 1) as the auxiliary mixture sampler reports relatively much smaller MAE and

RMSE. The simulation results are similar for both queen and rook weights matrices, indicating

that the performances of algorithms are invariant to spatial weights matrix specifications.

The simulation results for λ, σ2u and h in Tables 3 are similar to those obtained for the SV model.

Again, we observe that the naive sampler imposes severe downward bias on µh and performs worse

than the auxiliary mixture sampler for h. The performances of both samplers are similar for β, λ

and σ2u. In the case of ρ, while the auxiliary mixture sampler imposes almost no bias, the naive

sampler imposes significant positive bias. These results can also be confirmed from the exemplary

trace plots given in Figures 3–5. For brevity, we only present the results for the Queen contiguity

case for the SARSV model. For example, in the case of naive sampler, the red solid lines in these

figures for ρ and µh are not close to the corresponding true parameter values. In Figure 5 (b),

we provide plots in which we compare the estimated log-volatilities across all repetitions (ĥ) with

the true log-volatilities. The estimates based on the auxiliary mixture sampler are very close to

the true ones, whereas the estimates from the naive sampler are substantially smaller than the

corresponding true values.

Finally, we compare the performance of both algorithms in terms of true model selection. Table 4

presents the frequency of rejecting the true null hypothesis, H0 : λ = 0.9. In the queen contiguity

case, we see that both samplers perform similarly with a rejection rate about 4% for the SARSV

model, but the mixture auxiliary sampler slightly over rejects the null hypothesis for the SV model.

When we look at the results for the rook contiguity case, both samplers significantly over reject

the null hypothesis for the SV model, but for the SARSV model while the naive sampler has the

rejection rate around 4%, the the auxiliary mixture sampler has the rejection rate around 28%.
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Table 2: Simulation results for SV model

λ̂ σ̂2
u µ̂h ĥ

Bias RMSE Bias RMSE Bias RMSE MAE RMSE

Queen
10 MH 0.029 0.034 -0.041 0.093 0.072 0.313 0.480 1.172

N MH 0.023 0.033 -0.004 0.133 -2.437 2.458 2.516 7.841

Rook
10 MH 0.027 0.032 -0.026 0.088 0.069 0.305 0.477 1.253

N MH 0.021 0.031 0.022 0.138 -2.454 2.474 2.531 8.042

Notes: (i) 10 MH denotes Algorithm 1 and (ii) N MH denotes Algorithm 3.

Table 3: Simulation results for SARSV model

ρ̂ β̂ λ̂ σ̂2
u µ̂h ĥ

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE MAE RMSE

Queen
10 MH -0.019 0.019 0.002 0.002 0.028 0.034 -0.032 0.091 0.059 0.309 0.476 1.174

N MH 0.094 0.094 -0.005 0.005 0.018 0.031 0.030 0.146 -2.466 2.487 2.541 7.999

Rook
10 MH -0.003 0.003 0.001 0.001 0.029 0.034 -0.035 0.090 0.059 0.307 0.481 1.252

N MH 0.136 0.136 -0.007 0.007 0.020 0.031 0.014 0.135 -2.473 2.491 2.546 8.125

Notes: (i) 10 MH denotes Algorithm 1 and (ii) N MH denotes Algorithm 3.
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Figure 3: Trace plots for ρ̂ and β̂
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(b) Trace plots for β̂ when β = 0.05
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Figure 4: Trace plots for µ̂h and λ̂
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Figure 5: Trace plots for σ̂2u and estimated log-volatility
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Table 4: Savage-Dicky Density Ratio: λ = 0.9

SV SARSV

10 MH N MH 10 MH N MH

Queen

frequency 0.080 0.040 0.040 0.040

mean 0.301 0.296 0.245 0.285

Sdev 0.387 0.540 0.262 0.705

Rook

frequency 0.360 0.240 0.280 0.040

mean 1.184 2.863 2.515 0.453

Sdev 1.820 9.792 7.546 1.227

Notes: (i) 10 MH denotes Algorithm 1 and (ii) N MH denotes Algorithm 3.

8 An Empirical Application

We use the residential property sale prices in broader Chicago Metropolitan area for years 2014 and

2015. The data set is obtained from the Illinois Realtors (IAR) and contains annual median house

prices for residential properties in 1292 census tracts over 38 townships. We calculate the annual

returns from the first difference of log-annual median house prices. The summary statistics on

returns are given in Table 5. The reported sample standard deviations indicate that West township

has the largest variations in returns, followed by Hyde Park, Lake, Bloom, South and Calumet.

Before specifying the model, we use the Moran I test to check for existence of spatial correlation

in the returns and squared returns. The Moran I statistic tests the null hypothesis of no spatial

correlation against an unspecified form of spatial correlation. We use the queen and rook contiguity

weights matrices for the calculation of the test statistic. The results are reported in Table 6.

The results indicate that there is mild statistical evidence for the rejection of the null hypothesis

of no spatial correlation in returns, and there is strong evidence for the spatial correlation in

squared returns. However, the reported test statistics are substantially larger in the case of squared

returns suggesting strong spatial dependence. The presence of spatial correlation in the return

series indicates that the housing market may not be fully efficient in the sense that the return

in a census tract can be predicted by the returns in the nearby census tracts. This result is not

surprising since the frictions in a housing market such as transaction costs, carrying costs and tax

considerations may limit arbitrage opportunities leading to pricing inefficiencies (Case and Shiller,

1989).

Given the non-zero overall mean in Table 5 and the Moran I test results, we consider the

following version of (6.3) for the estimation

yi = µ+ ρ

n∑
j=1

wijyj + e
1
2
hi εi, where hi = µh + λ

n∑
j=1

wij(hj − µh) + ui, (8.1)
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Table 5: Descriptive Statistics: Returns

Nobv Mean Median Sdv Min Max

Whole Sample 1292 0.096 0.068 0.336 -1.936 2.278

Townships

Barrington 2 0.195 0.195 0.190 0.060 0.329

Berwyn 8 0.175 0.135 0.091 0.091 0.355

Bloom 32 -0.044 -0.009 0.398 -1.937 0.511

Bremen 13 0.072 0.058 0.210 -0.270 0.636

Calumet 11 0.040 0.014 0.287 -0.336 0.671

Cicero 10 0.041 0.080 0.224 -0.344 0.278

Elk Grove 7 0.100 0.126 0.060 -0.004 0.156

Evanston 14 0.044 0.033 0.237 -0.337 0.448

Hanover 16 0.148 0.106 0.121 -0.025 0.424

Hyde Park 140 0.116 0.094 0.496 -1.193 1.720

Jefferson 112 0.096 0.100 0.202 -1.075 0.509

Lake 125 0.108 0.090 0.407 -1.407 1.518

Lake View 100 0.039 0.018 0.203 -0.361 1.139

Lemont 2 -0.053 -0.053 0.045 -0.085 -0.022

Leyden 14 0.019 0.127 0.254 -0.633 0.257

Lyons 10 0.100 0.104 0.156 -0.170 0.431

Maine 22 0.110 0.074 0.138 -0.032 0.553

New Trier 13 0.009 -0.045 0.120 -0.140 0.248

Niles 27 0.059 0.058 0.090 -0.195 0.205

North 32 0.014 0.024 0.119 -0.292 0.339

Northfield 24 0.053 0.046 0.130 -0.218 0.274

Norwood Park 14 0.043 0.039 0.093 -0.122 0.245

Oak Park 6 0.039 0.031 0.253 -0.268 0.403

Orland 26 0.071 0.062 0.076 -0.046 0.255

Palatine 32 0.085 0.058 0.200 -0.431 0.909

Palos 10 0.084 0.093 0.109 -0.105 0.303

Proviso 49 0.169 0.103 0.205 -0.105 0.835

Rich 6 0.041 0.078 0.207 -0.208 0.254

River Forest 2 -0.112 -0.112 0.267 -0.301 0.076

Riverside 2 -0.032 -0.032 0.091 -0.096 0.033

Rogers Park 30 0.157 0.138 0.238 -0.321 0.797

Schaumburg 26 0.101 0.061 0.213 -0.248 0.926

South 49 0.104 0.033 0.328 -0.583 1.151

Stickney 24 0.096 0.083 0.144 -0.080 0.604

Thornton 32 0.030 0.088 0.178 -0.458 0.277

West 167 0.186 0.112 0.566 -1.754 2.278

Wheeling 34 0.069 0.045 0.162 -0.189 0.779

Worth 49 0.060 0.068 0.112 -0.237 0.298

for i = 1, . . . , 1292, where µ is the constant mean. We do not consider the effect of location and

housing attributes on the level of returns in (8.1). The literature on the decompositions of temporal

changes in house prices shows that house prices are mainly driven by altered coefficients in hedonic

regressions rather than by the changes in characteristics (McMillen, 2008; Nicodemo and Raya,
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Table 6: Moran I test results

Queen Rook

Returns 0.037 0.032

(0.009) (0.034)

Squared Returns 0.188 0.184

(0.000) (0.000)

Notes: P-values are reported in parentheses.

2012; Thomschke, 2015). In particular, McMillen (2008) shows that the variables on location and

housing attributes do not explain the change in the house price distributions by using a sample of

sales prices of single-family homes in Chicago for the years 1995 and 2005.

In (8.1), we specify two weights matrices according to queen and rook contiguity. Both weights

matrices are row normalized. We use the measure of fit called the deviance information criterion

(DIC) suggested by Spiegelhalter et al. (2002) to determine which weights matrix is more compatible

with the sample data. In the context of our model, the DIC is given by

DIC = −4E
[
log p (y∗|s,h)

∣∣y∗]+ 2 log p(y∗ |̂s, ĥ), (8.2)

where p (y∗|s,h) is the conditional likelihood given in (4.4), and ŝ and ĥ are the estimates of s and

h, respectively. The first term E
[
log p (y∗|s,h)

∣∣y∗] can be estimated by averaging the conditional

likelihood log p (y∗|s,h) over the posterior draws of s and h. Then, given a set of competing models

each of which corresponds to a different weights matrix, the preferred model is the one with the

minimum DIC value.5

Table 7: Analysis of Chicago Area House Sales Returns

ρ̂ µ̂ µ̂h λ̂ σ̂2u ĥ

Queen

mean 0.145 0.052 -3.305 0.908 0.542 -3.313

median 0.146 0.052 -3.307 0.910 0.535 -3.566

sdev 0.044 0.005 0.247 0.021 0.108 0.790

Rook

mean 0.114 0.055 -3.269 0.916 0.433 -3.275

median 0.114 0.055 -3.272 0.917 0.422 -3.514

sdev 0.044 0.005 0.239 0.020 0.093 0.764

DIC (Queen) 4025.284

DIC (Rook) 3955.915

Notes: (i) ĥ is the mean of estimated log-volatilities, and (ii) DIC stands for the deviance information
criterion.

5The DIC in (8.2) is called the conditional DIC , since it is formulated with the conditional likelihood p (y∗|s,h)
(Berg et al., 2004; Celeux et al., 2006). Note that the conditional DIC can favor overfitted models in model comparison
exercises (Chan and Grant, 2016).

24

 Electronic copy available at: https://ssrn.com/abstract=3104611 



Table 8: Means of estimated conditional standard deviations by township

Queen Rook

Township Nobv Mean Median Sdv Min Max Mean Median Sdv Min Max

Barrington 2 0.166 0.166 0.018 0.153 0.178 0.163 0.163 0.014 0.153 0.173

Berwyn 8 0.139 0.137 0.050 0.087 0.239 0.139 0.129 0.059 0.087 0.267

Bloom 32 0.249 0.237 0.113 0.127 0.762 0.255 0.232 0.114 0.132 0.753

Bremen 13 0.153 0.141 0.049 0.102 0.289 0.155 0.141 0.049 0.102 0.283

Calumet 11 0.285 0.274 0.087 0.172 0.439 0.291 0.279 0.087 0.158 0.466

Cicero 10 0.309 0.307 0.084 0.208 0.464 0.324 0.326 0.099 0.205 0.481

Elk Grove 7 0.086 0.085 0.008 0.076 0.095 0.089 0.090 0.007 0.079 0.097

Evanston 14 0.219 0.215 0.056 0.152 0.312 0.213 0.204 0.051 0.151 0.295

Hanover 16 0.148 0.144 0.027 0.108 0.198 0.153 0.154 0.028 0.112 0.203

Hyde Park 140 0.475 0.464 0.151 0.148 1.026 0.475 0.460 0.148 0.149 0.989

Jefferson 112 0.184 0.180 0.076 0.080 0.579 0.188 0.180 0.078 0.079 0.602

Lake 125 0.354 0.339 0.176 0.054 0.800 0.363 0.357 0.174 0.055 0.806

Lake View 100 0.164 0.156 0.070 0.062 0.514 0.167 0.154 0.074 0.064 0.519

Lemont 2 0.117 0.117 0.006 0.112 0.121 0.113 0.113 0.006 0.108 0.117

Leyden 14 0.177 0.168 0.071 0.106 0.360 0.177 0.164 0.065 0.113 0.338

Lyons 10 0.149 0.143 0.028 0.113 0.208 0.151 0.144 0.031 0.111 0.213

Maine 22 0.122 0.111 0.046 0.074 0.267 0.123 0.107 0.044 0.079 0.258

New Trier 13 0.149 0.146 0.015 0.124 0.176 0.150 0.148 0.015 0.129 0.183

Niles 27 0.109 0.101 0.022 0.084 0.168 0.107 0.101 0.023 0.085 0.171

North 32 0.135 0.130 0.025 0.096 0.210 0.137 0.136 0.023 0.101 0.205

Northfield 24 0.134 0.135 0.041 0.068 0.225 0.137 0.133 0.041 0.071 0.232

Norwood Park 14 0.116 0.114 0.026 0.078 0.161 0.119 0.114 0.030 0.079 0.182

Oak Park 6 0.232 0.219 0.049 0.173 0.311 0.243 0.244 0.042 0.183 0.305

Orland 26 0.087 0.090 0.023 0.048 0.141 0.087 0.090 0.022 0.048 0.131

Palatine 32 0.136 0.110 0.066 0.073 0.367 0.139 0.122 0.062 0.075 0.352

Palos 10 0.129 0.126 0.015 0.106 0.159 0.130 0.127 0.017 0.101 0.159

Proviso 49 0.191 0.161 0.098 0.063 0.456 0.191 0.171 0.096 0.068 0.444

Rich 6 0.227 0.232 0.024 0.190 0.257 0.224 0.229 0.024 0.185 0.253

River Forest 2 0.180 0.180 0.061 0.137 0.223 0.190 0.190 0.045 0.158 0.222

Riverside 2 0.135 0.135 0.003 0.133 0.137 0.134 0.134 0.004 0.131 0.137

Rogers Park 30 0.237 0.237 0.064 0.106 0.378 0.239 0.232 0.067 0.108 0.380

Schaumburg 26 0.164 0.163 0.058 0.089 0.369 0.170 0.168 0.061 0.089 0.361

South 49 0.313 0.275 0.162 0.097 0.725 0.314 0.277 0.155 0.099 0.675

Stickney 24 0.127 0.119 0.043 0.056 0.250 0.126 0.126 0.044 0.059 0.241

Thornton 32 0.195 0.191 0.039 0.123 0.305 0.197 0.190 0.037 0.139 0.304

West 167 0.442 0.353 0.286 0.096 1.442 0.444 0.364 0.282 0.099 1.424

Wheeling 34 0.117 0.114 0.042 0.068 0.305 0.117 0.115 0.041 0.070 0.294

Worth 49 0.126 0.121 0.031 0.088 0.229 0.127 0.118 0.030 0.090 0.229

Notes: The mean of estimated conditional variance in a township is calculated by taking the average of
estimated conditional variances in its census tracts.
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The estimation results are reported in Table 7. The results are similar for both weights matrices

and the DIC statistic indicates that the model based on the rook contiguity is more compatible

with the sample data. Therefore, we focused on the rook-based results. The estimates of spatial

autoregressive parameters ρ and λ are significant, and given by 0.114 and 0.916, respectively. These

estimates indicate that though there is weak spatial correlation in returns, log-volatilities exhibit

strong spatial correlation. The mean of estimated log-volatilities is −3.275, implying an average

conditional standard deviation estimate of 0.1945. In Figure 6 shows the line plots of conditional

variance estimates. These plots indicate that observations around 400 have relative larger con-

ditional variance estimates. Table 8 gives the spatial distribution of average conditional variance

estimates over townships. The five townships in order of large conditional variance estimates are

West, Hyde Park, Lake, South and Calumet. Note that these townships also have relatively large

variation in returns as shown in Table 5. The estimated conditional variances over census tracts

are displayed in maps given in Figure 7. The lowest conditional variance estimates are distributed

over the suburbs of the city of Chicago. On the other hand, the estimated conditional variances

are relatively higher in the corridor extending from the west side of city to the south side of city.

As shown in the maps, the spatial clustering in the west side of city has the highest estimates.

9 Conclusion

In this paper, we suggested a spatial stochastic volatility model that allows for a first-order spatial

autoregressive process for the latent log-volatility. Our parsimonious model allowed us to make

a clear distinction between spatial dependence and spatial correlation, which are often loosely

used in the literature. We also proposed some extensions that allow for spatial correlation in the

outcome equation by introducing the spatial lag of the dependent variable. For the estimation,

we transformed the model so that it took the form of a linear Gaussian state-space model, where

the log-volatility equation can be considered as the state equation. We devised Bayesian MCMC

algorithms coupled with the data augmentation method for the estimation of parameters and the

latent log-volatility terms. Our simulation results indicated that the Bayesian estimator using the

Gaussian mixture approximation has good finite sample properties. In an empirical application

using the price returns in the residential properties in the city of Chicago and its surrounding

suburbs, we showed that although there is weak positive spatial correlation in the returns, but a

strong positive spatial correlation in log-volatility terms. Our results on the estimated conditional

variances indicated that the lowest estimates are distributed over the suburbs of the city of Chicago,

while relatively larger estimates are distributed over a corridor extending from the west side of city

to the south side.

Our analysis suggests a number of directions for future research. First, we have already consid-

ered some extensions of our parsimonious model in Section 6. In future research, Bayesian model

comparison criteria based on either the marginal likelihood or integrated likelihood can be devel-

oped for model selection exercises. Second, panel data extensions of our model can be developed
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Figure 6: The line plots of conditional variance estimates
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Figure 7: The conditional variance estimates
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to allow for a rich structure in the outcome and log-volatility equations. Similarly, another fruitful

avenue for future research would be the extension of our model to a multivariate model in which a

correlation structure between log-volatility terms of different processes is allowed analogous to the

multivariate generalized ARCH (GARCH) type models suggested by Bollerslev (1990) and Harvey

et al. (1994). Last but not least, another important area for future research is to consider spatial

panel data models in which weak and strong spatial correlations (Chudik et al., 2011) are allowed

either for the outcome or the log-volatility equation.
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